Các dạng bài tập về các hệ thức lượng trong tam giác và giải tam giác

Tài liệu ôn tập Toán lớp 10

Download.vn xin giới thiệu đến các bạn 35 bài tập hệ thức lượng trong tam giác có đáp án được chúng tôi tổng hợp chi tiết, chính xác và đăng tải ngay sau đây. Đây là tài liệu học tập vô cùng bổ ích hay dành cho các bạn tham khảo, luyện tập nhằm củng cố kiến thức về các hệ thức lượng trong tam giác. Chúc các bạn ôn tập và đạt được kết quả cao trong kỳ thi sắp tới.

1. Cho ΔABC có a = 12, b = 15, c = 13

a. Tính số đo các góc của ΔABC

b. Tính độ dài các đường trung tuyến của ΔABC

c. Tính S, R, r

d. Tính ha, hb, hc

HS: Tự giải

2. Cho ΔABC có AB = 6, AC = 8, góc A = 1200

a. Tính diện tích ΔABC

b. Tính cạnh BC và bán kính R

HS: Tự giải

3. Cho ΔABC có a = 8, b = 10, c = 13

a. ΔABC có góc tù hay không?

b. Tính bán kính đường tròn ngoại tiếp ΔABC

c. Tính diện tích ΔABC

HS: Tự giải

4. Cho ΔABC có góc A = 600, góc B = 450, b = 2. Tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp ΔABC và diện tích tam giác.

HS: Tự giải

5. Cho ΔABC: AC = 7, AB = 5. Tính BC, S, ha, R.

HS: Tự giải

6. Cho ΔABC có mb = 4, mc = 2 và a = 3, tính độ dài cạnh AB, AC.

HS: Tự giải

7. Cho ΔABC có AB = 3, AC = 4 và diện tích S = 3√3. Tính cạnh BC.

HS: Tự giải

8. Tính bán kính đường tròn nội tiếp ΔABC biết AB = 2, AC = 3, BC = 4

HS: Tự giải

9. Tính góc A của ΔABC có các cạnh a, b, c thỏa hệ thức b(b2 - a2) = c(a2 - c2)

HS: Tự giải

Download file tài liệu để xem thêm nội dung chi tiết.

Cập nhật: 07/02/2020

Nhắc lại hệ thức lượng trong tam giác vuông.

Cho tam giác \(ABC\) vuông góc tại đỉnh \(A\) (\(\widehat{A} = 90^0\)), ta có:

1. \({b^2} = ab';{c^2} = a.c'\)

2. Định lý Pitago : \({a^2} = {b^2} + {c^2}\)

3. \(a.h = b.c\)

4. \(h^2= b’.c’\)

5. \(\dfrac{1}{h^{2}}\) = \(\dfrac{1}{b^{2}}\) + \(\dfrac{1}{c^{2}}\)

 

1. Định lý cosin

Định lí: Trong một tam giác bất kì, bình phương một cạnh bằng tổng các bình phương của hai cạnh còn lại trừ đi hai lần tích của hai cạnh đó nhân với \(cosin\) của góc xen giữa chúng.

Ta có các hệ thức sau:  

$$\eqalign{ & {a^2} = {b^2} + {c^2} - 2bc.\cos A \, \, (1) \cr & {b^2} = {a^2} + {c^2} - 2ac.\cos B \, \, (2) \cr

& {c^2} = {a^2} + {b^2} - 2ab.\cos C \, \, (3) \cr} $$

Hệ quả của định lí cosin:

\(\cos A = \dfrac{b^{2}+c^{2}-a^{2}}{2bc}\)

\(\cos B = \dfrac{a^{2}+c^{2}-b^{2}}{2ac}\)

\(\cos C = \dfrac{a^{2}+b^{2}-c^{2}}{2ab}\)

Áp dụng: Tính độ dài đường trung tuyến của tam giác:

Cho tam giác \(ABC\) có các cạnh \(BC = a, CA = b\) và \(AB = c\). Gọi \(m_a,m_b\) và \(m_c\) là độ dài các đường trung tuyến lần lượt vẽ từ các đỉnh \(A, B, C\) của tam giác. Ta có

\({m_{a}}^{2}\) =  \(\dfrac{2.(b^{2}+c^{2})-a^{2}}{4}\)

\({m_{b}}^{2}\) = \(\dfrac{2.(a^{2}+c^{2})-b^{2}}{4}\)

\({m_{c}}^{2}\) = \(\dfrac{2.(a^{2}+b^{2})-c^{2}}{4}\)

2. Định lí sin

Định lí: Trong tam giác \(ABC\) bất kỳ, tỉ số giữa một cạnh và sin của góc đối diện với cạnh đó bằng đường kính của đường tròn ngoại tiếp tam giác, nghĩa là

\(\dfrac{a}{\sin A}= \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2R\)

với \(R\) là bán kính đường tròn ngoại tiếp tam giác 

Công thức tính diện tích tam giác

Diện tích \(S\) của tam giác \(ABC\) được tính theo một trong các công thức sau

\(S = \dfrac{1}{2} ab \sin C= \dfrac{1}{2} bc \sin A \) \(= \dfrac{1}{2}ca \sin B \, \,(1)\)   

\(S = \dfrac{abc}{4R}\, \,(2)\)           

\(S = pr\, \,(3)\)              

\(S = \sqrt{p(p - a)(p - b)(p - c)}\)  (công thức  Hê - rông) \((4)\)

Trong đó:\(BC = a, CA = b\) và \(AB = c\); \(R, r\) là bán kính đường tròn ngoại tiếp, bk đường tròn nội tiếp và \(S\) là diện tích tam giác đó.

3. Giải tam giác và ứng dụng vào việc đo đạc

Giải tam giác : Giải tam giác là đi tìm các yếu tố (góc, cạnh) chưa biết của tam giác khi đã biết một số yếu tố của tam giác đó.

Muốn giải tam giác ta cần tìm mối liên hệ giữa các góc, cạnh đã cho với các góc, các cạnh chưa biết của tam giác thông qua các hệ thức đã được nêu trong định lí cosin, định lí sin và các công thức tính diện tích tam giác.

Các bài toán về giải tam giác: Có 3 bài toán cơ bản về gỉải tam giác:

a) Giải tam giác khi biết một cạnh và hai góc.

=> Dùng định lí sin để tính cạnh còn lại.

b) Giải tam giác khi biết hai cạnh và góc xen giữa

=> Dùng định lí cosin để tính cạnh thứ ba. 

Sau đó dùng hệ quả của định lí cosin để tính góc.

c) Giải tam giác khi biết ba cạnh

Đối với bài toán này ta sử dụng hệ quả của định lí cosin để tính góc: 

    \(\cos A = \dfrac{b^{2}+c^{2}-a^{2}}{2bc}\)       

    \(\cos B = \dfrac{a^{2}+c^{2}-b^{2}}{2ac}\)

    \(cos C = \dfrac{a^{2}+b^{2}-c^{2}}{2ab}\)

Chú ý: 

1. Cần lưu ý là một tam giác giải được khi ta biết 3 yếu tố của nó, trong đó phải có ít nhất một yếu tố độ dài (tức là yếu tố góc không được quá 2)

2. Việc giải tam giác được sử dụng vào các bài toán thực tế, nhất là các bài toán đo đạc.

  • Tải app VietJack. Xem lời giải nhanh hơn!

Video giải Toán 10 Bài 3: Các hệ thức lượng trong tam giác và giải tam giác - Cô Ngô Hoàng Ngọc Hà (Giáo viên VietJack)

Để học tốt Hình học 10, phần này giúp bạn giải các bài tập trong sách giáo khoa Toán 10 được biên soạn bám sát theo nội dung sách Hình học 10.

Quảng cáo

Quảng cáo

Quảng cáo

Bài giảng: Bài 3: Các hệ thức lượng trong tam giác và giải tam giác - Thầy Lê Thành Đạt (Giáo viên VietJack)

Tham khảo lời giải bài tập Hình học 10 chương 2 khác:

Đã có lời giải bài tập lớp 10 sách mới:

  • Hỏi bài tập trên ứng dụng, thầy cô VietJack trả lời miễn phí!

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k6: fb.com/groups/hoctap2k6/

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Bài viết trình bày đầy đủ các hệ thức lượng trong tam giác cùng một số dạng toán liên quan, trong mỗi dạng toán, bài viết hướng dẫn chi tiết phương pháp giải toán, các ví dụ minh họa và bài tập tự luyện đi kèm.

A. HỆ THỨC LƯỢNG TRONG TAM GIÁC
Cho tam giác $ABC$ có $a$, $b$, $c$ lần lượt là độ dài ba cạnh đối diện với ba góc $A$, $B$, $C$ của tam giác.

1. Định lí cosin: ${a^2} = {b^2} + {c^2} – 2bc\cos A.$ ${b^2} = {c^2} + {a^2} – 2ca\cos B.$ ${c^2} = {a^2} + {b^2} – 2ab\cos C.$

2. Định lí sin:

$\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R$ ($R$ là bán kính đường tròn ngoại tiếp tam giác $ABC$).

3. Độ dài đường trung tuyến của tam giác: Gọi ${m_a}$, ${m_b}$, ${m_c}$ là độ dài các đường trung tuyến lần lượt vẽ từ các đỉnh $A$, $B$, $C$ của tam giác $ABC.$

$m_a^2 = \frac{{{b^2} + {c^2}}}{2} – \frac{{{a^2}}}{4}.$ $m_b^2 = \frac{{{c^2} + {a^2}}}{2} – \frac{{{b^2}}}{4}.$ $m_c^2 = \frac{{{a^2} + {b^2}}}{2} – \frac{{{c^2}}}{4}.$

4. Các công thức tính diện tích tam giác: Gọi $R$, $r$ lần lượt là bán kính đường tròn ngoại tiếp, đường tròn nội tiếp tam giác $ABC$, $p$ là nửa chu vi $\left( {p = \frac{{a + b + c}}{2}} \right)$ và $S$ là diện tích của tam giác.

$S = \frac{1}{2}ab\sin C$ $ = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B.$ $S = \frac{{abc}}{{4R}} = pr.$

$S = \sqrt {p(p – a)(p – b)(p – c)} $ (công thức Hê-rông).

B. CÁC DẠNG TOÁN HỆ THỨC LƯỢNG TRONG TAM GIÁC
Dạng 1: Tính một số yếu tố trong tam giác theo một số yếu tố cho trước (trong đó có ít nhất một cạnh). Giải tam giác.
Phương pháp: + Sử dụng định lí cosin và định lí sin. + Tính toán các yếu tố trung gian (trước khi tính yếu tố cần tìm) bằng các hệ thức lượng trong tam giác thích hợp.

Chú ý: Bạn đọc hãy ôn tập lại các hệ thức lượng trong tam giác vuông (đã học ở lớp 9).

Bài toán 1: Cho tam giác $ABC$ có $b = 23$ $cm$, $c = 14$ $cm$, $\widehat A = {100^{0} }.$ a) Tính các cạnh và góc còn lại của tam giác. b) Tính diện tích của tam giác.

c) Tính đường cao ${h_a}$ vẽ từ $A$ của tam giác.

Theo định lí cosin, ta có: ${a^2} = {b^2} + {c^2} – 2bc\cos A$ $ = {23^2} + {14^2} – 2.23.14.\cos {100^{0} }$ $ \approx 836,83.$ Do đó: $a = \sqrt {836,83} \approx 28.9$ ($cm$). Từ định lí cosin ta cũng có: $\cos B = \frac{{{a^2} + {c^2} – {b^2}}}{{2ac}}$ $ = \frac{{{{(28,9)}^2} + {{14}^2} – {{23}^2}}}{{2.28,9.14}} \approx 0,62.$ Do đó $\widehat B \approx {51^{0} }41′ .$ Khi đó: $\widehat C \approx {180^{0} } – \left( {{{100}^{0} } + {{51}^{0} }41′} \right) = {28^{0} }19′ .$ b) Ta có: $S = \frac{1}{2}ab\sin C$ $ = \frac{1}{2}.28,9.23.\sin {28^{0} }19′ \approx 157,6$ $\left( {c{m^2}} \right).$

c) Ta có: ${h_a} = b\sin C$ $ = 23.\sin {28^{0} }19′ \approx 10,9$ $(cm).$

Bài toán 2: Cho tam giác $ABC$ có $a = 12$ $cm$, $\widehat B = {70^{0} }$, $\widehat C = {35^{0} }.$ a) Tính các cạnh và các góc còn lại của tam giác.

b) Tính bán kính $R$ của đường tròn ngoại tiếp tam giác.

a) Ta có: $\widehat A = {180^{0} } – (\widehat B + \widehat C)$ $ = {180^{0} } – \left( {{{70}^{0} } + {{35}^{0} }} \right) = {75^{0} }.$ Theo định lí sin, ta có: $\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}.$ Suy ra: $\left\{ {\begin{array}{*{20}{l}} {b = \frac{{a\sin B}}{{\sin A}}}\\ {c = \frac{{a\sin C}}{{\sin A}}} \end{array}} \right.$ $ \Rightarrow \left\{ {\begin{array}{*{20}{l}} {b = \frac{{12.\sin {{70}^{0} }}}{{\sin {{75}^{0} }}}}\\ {c = \frac{{12.\sin {{35}^{0} }}}{{\sin {{75}^{0} }}}} \end{array}} \right.$ $ \Rightarrow \left\{ {\begin{array}{*{20}{l}} {b \approx 11,7cm}\\ {c \approx 7,1cm} \end{array}} \right.$ b) Theo định lí sin, ta có: $2R = \frac{a}{{\sin A}}$ $ \Rightarrow R = \frac{a}{{2\sin A}}$ $ = \frac{{12}}{{2\sin {{75}^{0} }}} \approx 6,2$ $(cm).$

Nhận xét:

– Ta sử dụng định lí cosin khi biết $2$ cạnh và góc xen giữa $2$ cạnh đó. – Ta sử dụng định lí sin khi biết: + $1$ cạnh và góc đối diện cạnh đó. + $1$ cạnh và $2$ góc kề với nó (lúc này ta sẽ tính được góc đối diện cạnh đó).

– Việc tìm các yếu tố của tam giác khi biết các yếu tố khác còn được gọi là giải tam giác.

Bài toán 3: Cho tam giác $ABC$ có $a = 13$ $cm$, $b = 14$ $cm$, $c = 15$ $cm.$ a) Tính $\hat A$, $\cos B$, $\tan C.$

b) Tính diện tích của tam giác.

Theo định lí cosin, ta có: $\cos A = \frac{{{b^2} + {c^2} – {a^2}}}{{2bc}}$ $ = \frac{{{{14}^2} + {{15}^2} – {{13}^2}}}{{2.14.15}} = 0,6$ $ \Rightarrow \widehat A \approx {53^{0} }7′.$ $\cos B = \frac{{{a^2} + {c^2} – {b^2}}}{{2ac}}$ $ = \frac{{{{13}^2} + {{15}^2} – {{14}^2}}}{{2.13.15}} \approx 0,5.$ Ta có: ${\sin ^2}B = 1 – {\cos ^2}B$ $ = 1 – {(0,5)^2} = 0,75 = \frac{3}{4}$ $ \Rightarrow \sin B = \frac{{\sqrt 3 }}{2}.$ Do $\cos B \approx 0,5 \Rightarrow \widehat B \approx {60^{0} }.$

Từ đó: $\widehat C \approx {180^{0} } – \left( {{{53}^{0} }7′ + {{60}^{0} }} \right) = {66^{0} }53’$ $ \Rightarrow \tan C = \tan {66^{0} }53′ \approx 2,34.$

Dạng 2: Chứng minh các hệ thức liên quan tới các yếu tố trong tam giác.
Phương pháp: Sử dụng các hệ thức lượng đã có và các tính chất, các yếu tố trong tam giác để chứng minh.

Bài toán: Cho tam giác $ABC$ có các cạnh $a$, $b$, $c$, các đường cao tương ứng là ${h_a}$, ${h_b}$, ${h_c}.$ Chứng minh: a) $r = (p – a) \tan \frac{A}{2}$ $ = (p – b) \tan \frac{B}{2}$ $ = (p – c) \tan \frac{C}{2}.$

b) $\frac{1}{{{h_a}}} + \frac{1}{{{h_b}}} + \frac{1}{{{h_c}}} = \frac{1}{r}.$

Ta có: $r = IE = AE.\tan \frac{A}{2}$ $(*).$ Mặt khác: $AE + AF + BF$ $ + BD + CD + CE = 2p$ $ \Rightarrow 2AE + 2(BD + CD) = 2p$ $ \Rightarrow 2AE + 2a = 2p$ $ \Rightarrow AE = p – a.$ Thế vào $(*)$ ta có: $r = (p – a) \tan \frac{A}{2}.$ Tương tự ta chứng minh được: $r = (p – b) \tan \frac{B}{2}$ $ = (p – c) \tan \frac{C}{2}.$

b) Dựa vào công thức tính diện tích tam giác: $S = \frac{1}{2}a{h_a} = \frac{1}{2}b{h_b} = \frac{1}{2}c{h_c} = pr$, ta có: $\frac{1}{{{h_a}}} = \frac{a}{{2S}}$, $\frac{1}{{{h_b}}} = \frac{b}{{2S}}$, $\frac{1}{{{h_c}}} = \frac{c}{{2S}}$, $\frac{1}{r} = \frac{p}{S}.$

Dạng 3: Nhận dạng tam giác.
Phương pháp: Sử dụng các hệ thức lượng trong tam giác và các tính chất của các tam giác đặc biệt: tam giác vuông, tam giác cân, tam giác đều.
Chú ý: + Nếu ${b^2} + {c^2} = {a^2}$ thì tam giác $ABC$ vuông tại $A.$ + Nếu $b = c$ thì tam giác $ABC$ cân tại $A.$

+ Nếu $a = b = c$ thì tam giác $ABC$ đều.

Bài toán 1: Xác định dạng của tam giác $ABC$, biết: $S = \frac{1}{4}(a + b – c)\left( {a – b + c} \right).$

Theo công thức Hê-rông, ta có: $S = \sqrt {p(p – a)(p – b)(p – c)} .$ Do đó: $\sqrt {p(p – a)(p – b)(p – c)} $ $ = \frac{1}{4}(a + b – c)(a – b + c)$ $ \Leftrightarrow \sqrt {p(p – a)(p – b)(p – c)} $ $ = (p – c)(p – b)$ $ \Leftrightarrow p(p – a)(p – b)(p – c)$ $ = {(p – c)^2}{(p – b)^2}$ $ \Leftrightarrow p(p – a)$ $ = (p – b)(p – c)$ $ \Leftrightarrow {p^2} – pa$ $ = {p^2} – pb – pc + bc$ $ \Leftrightarrow p(b + c – a) = bc$ $ \Leftrightarrow (a + b – c)(b + c – a) = 2bc$ $ \Leftrightarrow {(b + c)^2} – {a^2} = 2bc$ $ \Leftrightarrow {b^2} + 2bc + {c^2} – {a^2} = 2bc$ $ \Leftrightarrow {b^2} + {c^2} = {a^2}.$

Vậy tam giác $ABC$ vuông tại $A.$

Bài toán 2: Tam giác $ABC$ có các góc và các cạnh thoả mãn: $\frac{{1 + \cos B}}{{\sin B}} = \frac{{2a + c}}{{\sqrt {4{a^2} – {c^2}} }}.$ Chứng minh tam giác $ABC$ là tam giác cân.

Ta có: $\frac{{1 + \cos B}}{{\sin B}} = \frac{{2a + c}}{{\sqrt {4{a^2} – {c^2}} }}$ $ \Leftrightarrow {\left( {\frac{{1 + \cos B}}{{\sin B}}} \right)^2} = {\left( {\frac{{2a + c}}{{\sqrt {4{a^2} – {c^2}} }}} \right)^2}$ $ \Leftrightarrow \frac{{{{(1 + \cos B)}^2}}}{{{{\sin }^2}B}} = \frac{{{{(2a + c)}^2}}}{{4{a^2} – {c^2}}}$ $ \Leftrightarrow \frac{{{{(1 + \cos B)}^2}}}{{1 – {{\cos }^2}B}} = \frac{{2a + c}}{{2a – c}}$ $ \Leftrightarrow \frac{{1 + \cos B}}{{1 – \cos B}} = \frac{{2a + c}}{{2a – c}}.$ Theo định lí cosin, ta có: $\cos B = \frac{{{a^2} + {c^2} – {b^2}}}{{2ac}}.$ Do đó: $\frac{{1 + \cos B}}{{1 – \cos B}}$ $ = \frac{{1 + \frac{{{a^2} + {c^2} – {b^2}}}{{2ac}}}}{{1 – \frac{{{a^2} + {c^2} – {b^2}}}{{2ac}}}}$ $ = \frac{{{a^2} + {c^2} – {b^2} + 2ac}}{{{b^2} – {a^2} – {c^2} + 2ac}}.$ Tức là: $\frac{{{a^2} + {c^2} – {b^2} + 2ac}}{{{b^2} – {a^2} – {c^2} + 2ac}}$ $ = \frac{{2a + c}}{{2a – c}}$ $ \Leftrightarrow 2{a^3} + 2a{c^2} – 2a{b^2} + 4{a^2}c$ $ – {a^2}c – {c^3} + {b^2}c – 2a{c^2}$ $ = 2a{b^2} – 2{a^3} – 2{a^2} – 4{a^2}c$ $ + {b^2}c – {a^2}c – {c^3} + 2a{c^2}$ $ \Leftrightarrow 4{a^3} – 4a{b^2} = 0$ $ \Leftrightarrow 4a\left( {{a^2} – {b^2}} \right) = 0$ $ \Leftrightarrow {a^2} = {b^2}$ $ \Leftrightarrow a = b.$

Vậy tam giác $ABC$ cân tại $C.$

C. BÀI TẬP RÈN LUYỆN
Bài toán 1: Tính các góc, các cạnh còn lại, đường cao ${h_a}$ và bán kính đường tròn ngoại tiếp $R$ của tam giác $ABC$ biết: a) $a = 118cm$, $b = 92cm$, $\widehat C = {58^{0} }.$ b) $b = 31,2cm$, $\widehat A = {124^{0} }30’$, $\widehat C = {18^{0} }.$

c) $a = 153cm$, $b = 117cm$, $c = 134cm.$

Bài toán 2: Gọi ${m_a}$, ${m_b}$, ${m_c}$ là các trung tuyến ứng với các cạnh $a$, $b$, $c$ của tam giác $ABC$: a) Biết $a = 26cm$, $b = 18cm$, $c = 16cm.$ Tính ${m_a}.$ b) Biết $a = 7cm$, $b = 11cm$, ${m_c} = 6cm.$ Tính $c.$

c) Biết $a = 5cm$, $b = 7 cm$, $\widehat C = {46^{0} }.$ Tính ${m_b}.$

Bài toán 3: Gọi $I$, $J$ lần lượt là trung điểm của các đường chéo $AC$, $BD$ của tứ giác $ABCD$, chứng minh: a) $A{B^2} + B{C^2} + C{D^2} + D{A^2}$ $ = A{C^2} + B{D^2} + 4I{J^2}.$ b) Tứ giác $ABCD$ là hình bình hành $ \Leftrightarrow A{B^2} + B{C^2} + C{D^2} + D{A^2}$ $ = A{C^2} + B{D^2}.$

c) Xác định công thức tính đường chéo $d$ của hình thang cân biết đáy nhỏ là $a$, đáy lớn là $b$ và cạnh bên là $c.$

Bài toán 4: Chứng minh tập các điểm mà tổng các bình phương khoảng cách đến $2$ điểm cố định $A$, $B$ cho trước bằng một số không đổi $k^2$ là một đường tròn.

Bài toán 5: Cho tam giác $ABC$, chứng minh: a) $S = \frac{{abc}}{{4R}}.$ b) $S = pr.$ c) $\sin A = \frac{2}{{bc}}\sqrt {p(p – a)(p – b)(p – c)} .$

d) $S = \sqrt {p(p – a)(p – b)(p – c)} .$

Bài toán 6: Gọi ${r_a}$, ${r_b}$, ${r_c}$ lần lượt là bán kính đường tròn bàng tiếp thuộc cạnh $a$, $b$, $c$ của tam giác $ABC$, $r$ là bán kính đường tròn nội tiếp tam giác $ABC.$ Chứng minh: a) ${r_a} = p\tan \frac{A}{2}$ $ = \frac{S}{{p – a}}$ $ = \frac{{(p – b)(p – c)}}{r}.$ b) $\frac{1}{{{r_a}}} + \frac{1}{{{r_b}}} + \frac{1}{{{r_c}}} = \frac{1}{r}.$ c) $S = \sqrt {r.{r_a}.{r_b}.{r_c}} .$ d) $r = p\tan \frac{A}{2}\tan \frac{B}{2}\tan \frac{C}{2}.$

e) ${r_a} + {r_b} + {r_c} – r = 4R$ (công thức Stây-nơ).

Bài toán 7: Cho tam giác $ABC$, chứng minh: a) ${h_a} = \frac{2}{a}\sqrt {p(p – a)(p – b)(p – c)} .$ b) ${c^2} = {(a – b)^2} + 4S.\frac{{1 – \cos C}}{{\sin C}}.$ c) $ a\sin B\sin C = {h_a}\sin A.$

d) $\cot A + \cot B + \cot C$ $ = \frac{{R\left( {{a^2} + {b^2} + {c^2}} \right)}}{{abc}}.$

Bài toán 8: Cho tam giác $ABC$, chứng minh: a) Nếu ${m_a} = c$ thì $ \tan B = 3\tan C.$

b) Nếu $a + c = 2b$ thì $ac = 6Rr.$

Bài toán 9: Chứng minh điều kiện cần và đủ để tam giác $ABC$ vuông là: a) $\sin A = \frac{{\sin B + \sin C}}{{\cos B + \cos C}}.$ b) $\tan \frac{B}{2} = \frac{b}{{a + c}}.$

c) $2R + r = p.$

Bài toán 10: Xác định dạng tam giác $ABC$, biết rằng: a) $(p – b)\cot \frac{C}{2} = p\tan \frac{B}{2}.$ b) $\frac{{{{\sin }^2}B}}{{{{\sin }^2}C}} = \frac{{\tan B}}{{\tan C}}.$ c) $S = \frac{2}{3}{R^2}\left( {{{\sin }^3}A + {{\sin }^3}B + {{\sin }^3}C} \right).$

d) ${\sin ^4}C + 2{\sin ^4}A + 2{\sin ^4}B$ $ = 2{\sin ^2}C\left( {{{\sin }^2}A + {{\sin }^2}B} \right).$

Bài toán 11: Chứng minh rằng nếu $\left\{ {\begin{array}{*{20}{l}} {c = 2a\cos B}\\ {\frac{{{a^3} + {b^3} – {c^3}}}{{a + b – c}} = {c^2}}

\end{array}} \right.$ thì tam giác $ABC$ đều.



Video liên quan

Chủ đề