Hay đưa ra bằng chứng tế bào học và sinh học phân tử để chứng minh mọi sinh vật có nguồn gốc chung

Các gen sinh ung là dạng bất thường của gen bình thường (proto-oncogenes) điều chỉnh các khía cạnh khác nhau của sự phát triển và biệt hóa tế bào. Đột biến các gen này gây ra kích thích trực tiếp và liên tục nhiều con đường dẫn truyền tín hiệu (các thụ thể yếu tố phát triển bề mặt tế bào, các con đường dẫn truyền tín hiệu tải nạp nội bào, các yếu tố sao chép, các yếu tố phát triển khác) kiểm soát sự tăng trưởng và phân chia tế bào, sửa chữa DNA, tăng sinh mạch và nhiều quá trình sinh lý học khác.

> 100 gen gây ung thư có thể góp phần vào sự chuyển dạng thành tế bào ung thư ở người. Ví dụ, gen RAS mã hoá protein ras, mang tín hiệu từ các thụ thể gắn vào màng tế bào trên con đường RAS- MAPKinase tới nhân tế bào, điều hòa phân chia tế bào. Các đột biến có thể dẫn đến sự hoạt hóa không thích hợp của protein ras, dẫn đến tăng trưởng tế bào không kiểm soát được. Trên thực tế, protein ras bất thường gặp trong khoảng 25% các loại ung thư ở người.

Các gen sinh ung thư khác cũng được chỉ ra có liên quan đến các loại ung thư nhất định. Bao gồm

  • HER2 (khuếch đại trong ung thư vú và ung thư dạ dày và ít phổ biến hơn trong ung thư phổi)

  • BCRABL1BCR-ABL (sự dịch chuyển vị trí của 2 gen gặp trong bệnh bạch cầu mạn dòng tủy và một số bệnh bạch cầu cấp dòng lympho týp tế bào B)

  • CMYCC-MYC (u lympho Burkitt)

  • NMYCN-MYC (ung thư phổi tế bào nhỏ, u nguyên bào thần kinh)

  • EGFR (ung thư biểu mô tuyến của phổi)

  • EML4ALK (đột biến chuyển đoạn gây hoạt hóa ALK tyrosine kinase và gây ra một dạng ung thư biểu mô tuyến ở phổi)

Các gen sinh ung thư đặc hiệu có thể có ý nghĩa quan trọng trong chẩn đoán, điều trị và tiên lượng (xem phần bàn luận về các loại ung thư cụ thể).

Oncogenes thường là kết quả của

  • Các đột biến điểm tế bào soma (ví dụ, do các chất gây ung thư)

  • Sự khuếch đại gen (ví dụ, sự gia tăng số lượng bản sao của một gen bình thường)

  • Sự chuyển đoạn (trong đó các đoạn của các gen khác nhau hợp nhất thành một chuỗi duy nhất)

Những thay đổi này có thể làm tăng hoạt tính của sản phẩm gen (protein) hoặc thay đổi chức năng của nó. Đôi khi, sự đột biến của các gen trong tế bào mầm dẫn đến sự di truyền của một xu hướng ung thư.

Các gen bao gồm DNA. Chiều dài của gen quy định độ dài của protein được gen mã hóa. DNA là một chuỗi xoắn kép, trong đó các nucleotide (các bazơ) liên kết với nhau:

  • Adenine (A) liên kết với thymine (T)

  • Guanine (G) liên kết với cytosine (C)

DNA được phiên mã trong quá trình tổng hợp protein, trong đó một sợi ADN được dùng làm khuôn mẫu tổng hợp RNA thông tin (mRNA). RNA có các base như DNA, ngoại trừ uracil (U) thay thế thymine (T). mRNA di chuyển từ nhân đến tế bào chất và sau đó đến ribosome, nơi diễn ra quá trình tổng hợp protein. RNA vận chuyển (tRNA) mang các axit amin đến ribosome, và gắn axit amin vào chuỗi polypeptide đang phát triển theo một trình tự xác định bởi mRNA. Khi một chuỗi axit amin được lắp ráp, nó tự gấp nếp cuộn xoắn để tạo ra một cấu trúc protein ba chiều phức tạp dưới ảnh hưởng của các phân tử đi kèm lân cận.

DNA được mã hóa bằng mã bộ ba, chứa 3 trong số 4 nucleotides A, T, G, C. Các axit amin cụ thể được mã hóa bởi các mã bộ ba xác định. Vì có 4 nucleotide, nên số lượng mã bộ ba có thể có là 43 (64). Tuy nhiên chỉ có 20 axit amin, nên có một số mã bộ ba dư thừa. Bởi vậy, một số mã bộ ba cùng mã hóa một axit amin. Các bộ ba khác có thể mã hóa các yếu tố mở đầu hoặc kết thúc quá trình tổng hợp protein và sắp xếp, lắp ráp các axit amin.

Gen bao gồm exon và intron. Exons mã hóa cho các axit amin cấu thành protein. Còn introns chứa các thông tin chi phối việc kiểm soát và tốc độ sản xuất protein. Exons và intron cùng được sao chép vào mRNA, nhưng các đoạn được sao chép từ intron được loại bỏ sau đó. Nhiều yếu tố điều hòa việc phiên mã, bao gồm RNA antisense, được tổng hợp từ chuỗi DNA không được mã hoá thành mRNA. Ngoài DNA, các nhiễm sắc thể chứa histon và các protein khác cũng ảnh hưởng đến sự biểu hiện gen (protein và số lượng protein được tổng hợp từ một gen nhất định).

Kiểu gen cho biết thành phần và trình tự di truyền cụ thể; nó quy định những protein nào được mã hóa để sản xuất.

Ngược lại, bộ gen nói đến toàn bộ thành phần tất cả của các nhiễm sắc thể đơn bội, bao gồm các gen mà chúng chứa.

Kiểu hình hướng tới biểu hiện cơ thể, sinh hóa và sinh lý của một người - nghĩa là, làm thế nào các tế bào (hay cơ thể) thực hiện chức năng. Kiểu hình được xác định bởi loại và số lượng protein tổng hợp, tức là, sự biểu hiện của các gen ra môi trường như thế nào. Kiểu gen cụ thể có thể có hoặc không tương quan tốt với kiểu hình.

Biểu hiện đề cập đến quá trình điều hòa thông tin được mã hoá trong một gen được dịch mã từ một phân tử (thường là protein hoặc RNA). Sự biểu hiện gen phụ thuộc vào nhiều yếu tố như tính trạng đó trội hay lặn, mức ngoại hiện và biểu hiện của gen ( xem Các yếu tố ảnh hưởng đến sự biểu hiện gen Các yếu tố ảnh hưởng đến sự biểu hiện gen ), mức độ phân hóa mô (xác định theo loại mô và tuổi), các yếu tố môi trường, giới tính hoặc sự bất hoạt của nhiễm sắc thể và các yếu tố khác chưa biết.

Các yếu tố ảnh hưởng đến biểu hiện gen mà không thay đổi trình tự bộ gen được gọi là các yếu tố biểu sinh.

Sự hiểu biết về nhiều cơ chế sinh hóa điều chỉnh sự biểu hiện gen ngày càng rõ ràng. Một cơ chế là sự thay đổi việc nối exon (còn gọi là quá trình trưởng thành mRNA). Trong phân tử mRNA mới được tổng hợp, các intron được loại bỏ, từng đoạn exon được tách ra riêng biệt, và sau đó các exon lắp ráp theo nhiều trật tự khác nhau, dẫn đến nhiều loại mRNA khác nhau và có khả năng dịch mã ra nhiều protein từ cùng chung một mã gen ban đầu. Số lượng protein được tổng hợp trong cơ thể con người có thể lên đến > 100.000 mặc dù hệ gen của con người chỉ có khoảng 20.000 gen.

Các cơ chế trung gian biểu hiện gen khác bao gồm các phản ứng methyl hóa DNA và phản ứng của histone như methyl hóa và acetyl hóa. DNA methyl hóa có xu hướng làm bất hoạt một gen. Chuỗi DNA cuộn xoắn quanh quả cầu histone. Sự methyl hóa histone có thể làm tăng hoặc giảm số lượng protein được tổng hợp từ một gen cụ thể. Sự acetyl hóa histone liên quan đến việc giảm biểu hiện gen ra bên ngoài. Sợi DNA không được phiên mã để hình thành mRNA cũng có thể được sử dụng như một khuôn mẫu để tổng hợp RNA, kiểm soát quá trình phiên mã của sợi đối diện.

Một cơ chế quan trọng khác liên quan đến microRNAs (miRNAs). MiRNA ngắn, hình dạng như chiếc kẹp tóc (các trình tự RNA khi liên kết với nhau) RNA này ức chế sự biểu hiện gen sau khi phiên mã. MiRNA có thể tham gia vào việc điều chỉnh đến 60% protein đã phiên mã.

Mô hình nội cộng sinh về nguồn gốc lục lạp và ty thể

Thuyết nội cộng sinh là một học thuyết tiến hóa đề cập đến nguồn gốc của các tế bào nhân chuẩn từ. Học thuyết này lần đầu tiên được đưa ra bởi nhà thực vật học Nga Konstantin Mereschkowski vào năm 1905 và 1910, và được hỗ trợ bởi bằng chứng vi sinh của Lynn Margulis vào năm 1967. Thuyết này cho rằng một số bào quan phân biệt ở tế bào nhân thực là tiến hóa qua các sinh vật nhân sơ (vi khuẩn và vi sinh vật cổ) nội cộng sinh.

Thuyết nội cộng sinh cho rằng ty thể, lạp thể như lục lạp, và có thể một số bào quan khác trong tế bào nhân chuẩn là đại diện tế bào nhân sơ từng sống tự do trước đây và chiếm chỗ trong một tế bào nhờ nội cộng sinh. Cụ thể hơn, ty thể có thể là vi khuẩn hiếu khí cổ đại kiểu như Rickettsiales proteobacteria, còn lục lạp thì là vi khuẩn lam cổ đại có khả năng quang hợp.

Đã có nhiều chứng cứ hỗ trợ cho học thuyết này, ta có thể điểm qua như: ty thể và lạp thể chỉ nhân lên thông qua trực phân, còn tế bào thì không thể tổng hợp mới bào quan này; các protein vận chuyển được gọi là porin được tìm thấy trong màng ngoài của ti thể, lục lạp và màng tế bào vi khuẩn; hợp chất cardiolipin chỉ được tìm thấy ở màng trong ty thể và màng tế bào vi khuẩn; một số ti thể và lạp thể chứa các phân tử DNA dạng vòng, trần tương tự như nhiễm sắc thể của vi khuẩn.

Có nhiều bằng chứng ủng hộ rằng ti thể và lạp thể (bao gồm cả lục lạp) có nguồn gốc từ các vi khuẩn.[1][2][3][4][5]

  • Các ti thể và lạp thể mới chỉ được hình thành thông qua trực phân, dạng phân bào được sử dụng bởi vi khuẩn và vi sinh vật cổ.[6]
  • Nếu ti thể hoặc lục lạp của tế bào được loại bỏ, tế bào không có phương tiện để tạo mới những bào quân này.[7] Ví dụ, ở một số loại tảo, chẳng hạn như Euglena, các lạp thể có thể bị phá hủy bởi một số hóa chất hoặc do thiếu ánh sáng kéo dài mà không ảnh hưởng đến tế bào. Trong trường hợp này, các lạp thể sẽ không tái sinh.
  • Các protein vận chuyển được gọi là porin được tìm thấy trong màng ngoài của ty lạp thể và lục lạp, cũng được tìm thấy trên màng của tế bào vi khuẩn.[8][9][10]
  • Một lipid màng là cardiolipin chỉ được tìm thấy ở màng trong ty thể và màng tế bào vi khuẩn.[11]
  • Một số ty thể và một số lạp thể chứa các phân tử DNA dạng vòng tương tự như DNA của vi khuẩn cả về kích thước lẫn cấu trúc.[12]
  • So sánh hệ gen cho thấy mối liên hệ chặt chẽ giữa ty thể và vi khuẩn Rickettsial.[13]
  • So sánh hệ gen cho thấy mối quan hệ chặt chẽ giữa lạp thể và vi khuẩn lam.[14]
  • Nhiều gen trong bộ gen của ty lạp thể và lục lạp đã bị mất hoặc chuyển đến nhân của tế bào chủ. Do đó, nhiễm sắc thể của nhiều sinh vật nhân chuẩn chứa các gen có nguồn gốc từ hệ gen của ty thể và lạp thể.[12]
  • Ribosome của ty thể và lạp thể giống với ribosome nhân sơ (70S) hơn so với các sinh vật nhân chuẩn (80S).[15]
  • Protein được tạo ra bởi ty thể và lục lạp sử dụng N-formylmethionine làm amino acid khởi đầu, điều này giống với các protein được tạo ra bởi vi khuẩn chứ không phải các protein được tạo ra bởi các gen của tế bào nhân chuẩn hoặc vi sinh vật cổ.[16][17]

 

So sánh lục lạp và vi khuẩn lam để thấy điểm tương tự giữa chúng.

  1. ^ [1] Lưu trữ 2017-06-22 tại Wayback Machine Kimball, J. 2010. Kimball's Biology Pages. Truy cập ngày 13 tháng 10 năm 2010. An online open source biology text by Harvard professor, and author of a general biology text, John W. Kimball.
  2. ^ Reece, J., Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson, 2010. Campbell Biology. 9th Edition Benjamin Cummings; 9th Ed. (ngày 7 tháng 10 năm 2010)
  3. ^ Raven, P., George Johnson, Kenneth Mason, Jonathan Losos, Susan Singer, 2010. Biology. McGraw-Hill 9th Ed. (ngày 14 tháng 1 năm 2010)
  4. ^ Gray, MW (1992). “The endosymbiont hypothesis revisited”. International Review of Cytology. 141: 233–357. doi:10.1016/S0074-7696(08)62068-9.
  5. ^ Zimorski, V.; Ku, C.; Martin, W. F.; Gould, S. B. (2014). “Endosymbiotic theory for organelle origins”. Curr Opin Microbiol. 22: 38–48. doi:10.1016/j.mib.2014.09.008. PMID 25306530.
  6. ^ Margolin, William (tháng 11 năm 2005). “FtsZ and the Division of Prokaryotic Cells and Organelles”. Nat Rev Mol Cell Biol. 6 (11): 862–871. doi:10.1038/nrm1745. PMC 4757588. PMID 16227976.
  7. ^ Wise, Robert R; Hoober, J. Kenneth (2007). Structure and function of plastids. Berlin: Springer. tr. 104. ISBN 9781402065705.
  8. ^ Fischer, K, Weber, A, Brink, S, Arbinger, B, Schünemann, D, Borchert, S, Heldt, HW, Popp, B, Benz, R, Link, TA (1994). “Porins from plants. Molecular cloning and functional characterization of two new members of the porin family”. J Biol Chem. 269 (41): 25754–25760. PMID 7523392.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  9. ^ Zeth K.; Thein, M. (2010). “Porins in prokaryotes and eukaryotes: common themes and variations”. Biochem J. 431 (1): 13–22. doi:10.1042/BJ20100371. PMID 20836765.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  10. ^ Fairman, JW; Noinaj, N; Buchanan, SK (2011). “The structural biology of β-barrel membrane proteins: a summary of recent reports”. Current Opinion in Structural Biology. 21 (4): 523–531. doi:10.1016/j.sbi.2011.05.005. PMC 3164749. PMID 21719274.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  11. ^ Mileykovskaya, E.; Dowhan, W. (2009). “Cardiolipin membrane domains in prokaryotes and eukaryotes”. Biochim Biophys Acta. 1788 (10): 2084–2091. doi:10.1016/j.bbamem.2009.04.003. PMC 2757463. PMID 19371718.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  12. ^ a b Timmis, Jeremy; Ayliffe, Michael; Huang, Chun; Martin, William (tháng 2 năm 2004). “Endosymbiotic Gene Transfer: Organelle Genomes Forge Eukaryotic Chromosomes”. Nature Reviews Genetics. 5: 123–135. doi:10.1038/nrg1271. PMID 14735123.
  13. ^ Andersson, SG, Zomorodipour, A, Andersson, JO, Sicheritz-Pontén, T, Alsmark, UC, Podowski, RM, Näslund, AK, Eriksson, AS, Winkler, HH, Kurland, CG (1998). “The genome sequence of Rickettsia prowazekii and the origin of mitochondria”. Nature. 396 (6707): 133–140. doi:10.1038/24094. PMID 9823893.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  14. ^ Dagan, T, Roettger, M, Stucken, K, Landan, G, Koch, R, Major, P, Gould, SB, Goremykin, VV, Rippka, R, Tandeau de Marsac, N, Gugger, M, Lockhart, PJ, Allen, JF, Brune, I, Maus, I, Pühler, A, Martin, WF (2013). “Genomes of Stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids”. Genome Biol Evol. 5 (1): 31–44. doi:10.1093/gbe/evs117. PMC 3595030. PMID 23221676.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  15. ^ Manuell, Andrea L.; Quispe, Joel; Mayfield, Stephen P. (tháng 8 năm 2007). “Structure of the Chloroplast Ribosome: Novel Domains for Translation Regulation”. PLOS Biology. 5: e209. doi:10.1371/journal.pbio.0050209. PMC 1939882. PMID 17683199.
  16. ^ Schwartz, James; Meyer, Ralph; Eisenstadt, Jerome; Brawerman, George (1967). “Involvement of N-formylmethionine in initiation of protein synthesis in cell-free extracts of Euglena gracilis”. J Mol Biol. 25 (3): 571–IN27. doi:10.1016/0022-2836(67)90210-0. Truy cập ngày 18 tháng 5 năm 2016.
  17. ^ Smith, A. E.; Marcker, K. A. (1968). “N-formylmethionyl transfer RNA in mitochondria from yeast and rat liver”. J Mol Biol. 38 (2): 241–243. doi:10.1016/0022-2836(68)90409-9. Truy cập ngày 18 tháng 5 năm 2016.

  • Alberts, Bruce (2002). Molecular Biology of the Cell. New York: Garland Science. ISBN 0-8153-3218-1. (General textbook)
  • Brinkman, F. S., Blanchard, J. L., Cherkasov A, và đồng nghiệp (tháng 8 năm 2002). “Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae, cyanobacteria, and the chloroplast”. Genome Res. 12 (8): 1159–67. doi:10.1101/gr.341802. PMC 186644. PMID 12176923.
  • Cohen, W. D.; Gardner, R. S. (1959). “Viral Theory and Endosymbiosis” (PDF). Bản gốc (PDF) lưu trữ ngày 15 tháng 7 năm 2011. Truy cập ngày 16 tháng 9 năm 2018.Quản lý CS1: sử dụng tham số tác giả (liên kết) (Discusses theory of origin of eukaryotic cells by incorporating mitochondria and chloroplasts into anaerobic cells with emphasis on 'phage bacterial and putative viral mitochondrial/chloroplast interactions.)
  • Jarvis, P. (tháng 4 năm 2001). “Intracellular signalling: the chloroplast talks!”. Curr. Biol. 11 (8): R307–10. doi:10.1016/S0960-9822(01)00171-3. PMID 11369220. (Recounts evidence that chloroplast-encoded proteins affect transcription of nuclear genes, as opposed to the more well-documented cases of nuclear-encoded proteins that affect mitochondria or chloroplasts.)
  • Blanchard, J. L.; Lynch, M. (tháng 7 năm 2000). “Organellar genes: why do they end up in the nucleus?”. Trends Genet. 16 (7): 315–20. doi:10.1016/S0168-9525(00)02053-9. PMID 10858662.Quản lý CS1: sử dụng tham số tác giả (liên kết) (Discusses theories on how mitochondria and chloroplast genes are transferred into the nucleus, and also what steps a gene needs to go through in order to complete this process.)
  • Okamoto, N.; Inouye, I. (tháng 10 năm 2005). “A secondary symbiosis in progress?”. Science. 310 (5746): 287. doi:10.1126/science.1116125. PMID 16224014.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  • Understanding Science Team. “Cells within cells: An extraordinary claim with extraordinary evidence” (PDF). University of California, Berkeley. Truy cập ngày 16 tháng 2 năm 2014.
  • Tree of Life Eukaryotes

Lấy từ “//vi.wikipedia.org/w/index.php?title=Thuyết_nội_cộng_sinh&oldid=68333885”

Video liên quan

Chủ đề