Odometry là gì

  • Aboelmagd N, Karmat TB, Georgy J (2013) Fundamentals of inertial navigation, satellite-based positioning and their integration. Springer, Berlin

    Google Scholar 

  • Alonso IP, Llorca DF, Gavilán M et al (2012) Accurate global localization using visual odometry and digital maps on urban environments. IEEE Trans Intell Transp Syst 13(4):1535–1545

    Article  Google Scholar 

  • Aqel M, Marhaban M, Iqbal M et al (2016) Adaptive-search template matching technique based on vehicle acceleration for monocular visual odometry system. IEEJ Trans Electr Electr Eng 11(6):739–752

    Article  Google Scholar 

  • Azartash H, Banai N, Nguyen TQ (2014) An integrated stereo visual odometry for robotic navigation. Robot Auton Syst 62(4):414–421

    Article  Google Scholar 

  • Barron JL, Fleet DJ, Beauchemin SS (1994) Performance of optical flow techniques. Int J Comput Vis 12:43–77

    Article  Google Scholar 

  • Bellotto N, Burn K, Fletcher E et al (2008) Appearance-based localization for mobile robots using digital zoom and visual compass. Robot Auton Syst 56(2):143–156

    Article  Google Scholar 

  • Benseddik HE, Djekoune O, Belhocine M (2014) SIFT and SURF Performance evaluation for mobile robot-monocular visual odometry. J Image Gr 2(1):7

    Google Scholar 

  • Borenstein J, Everett H, Feng L (1996) Where am I? Sensors and methods for mobile robot positioning. Univ Mich 119(120):27

    Google Scholar 

  • Borenstein J, Everett HR, Feng L et al (1997) Mobile robot positioning-sensors and techniques. Naval Command, Control and Ocean Surveillance Center RDT and E Division, San Diego

    Google Scholar 

  • Brunelli R (ed) (2009) Template matching techniques in computer vision: theory and practice, 1st edn. Wiley, New York

    Google Scholar 

  • Bunschoten R, Krose B (2003) Visual odometry from an omnidirectional vision system. In: Proceedings IEEE International Conference on anonymous robotics and automation, 2003. vol 1, IEEE, Piscataway, p 577–583

  • Campbell J, Sukthankar R, Nourbakhsh I (2004) Techniques for evaluating optical flow for visual odometry in extreme terrain. Int Conf Intell Robot Syst 4:3704–3711

    Google Scholar 

  • Campbell J, Sukthankar R, Nourbakhsh I et al (2005) A robust visual odometry and precipice detection system using consumer-grade monocular vision. In: Proceedings of the 2005 IEEE International Conference on anonymous robotics and automation 2005. IEEE, Piscataway, p 3421–3427

  • Cheng Y, Maimone M, Matthies L (2005) Visual odometry on the Mars exploration rovers. In: IEEE International Conference on anonymous systems, man and cybernetics, 2005. vol 1, IEEE, Piscataway, p 903–910

  • Choi M, Kim W (2002) A novel two stage template matching method for rotation and illumination invariance. Pattern Recognit 35(1):119–129

    Article  MATH  Google Scholar 

  • Choi S, Park J, Yu W (2015) Simplified epipolar geometry for real-time monocular visual odometry on roads. Int J Control Autom Syst 13(6):1454–1464

    MathSciNet  Article  Google Scholar 

  • Cook G (2011) Mobile robots: navigation, control and remote sensing. Wiley, New York

    Book  Google Scholar 

  • Corke P, Strelow D, Singh S (2004) Omnidirectional visual odometry for a planetary rover. In: Proceedings of the IEEE/RSJ International Conference on anonymous intelligent robots and systems, 2004. vol 4, IEEE, Piscataway, p 4007–4012

  • Cumani A (2011) Feature localization refinement for improved visual odometry accuracy. Int J Circuits Syst Signal Process 5(2):151–158

    Google Scholar 

  • Cumani A, Guiducci A (2008) Fast stereo-based visual odometry for rover navigation. WSEAS Trans Circuits Syst 7(7):648–657

    Google Scholar 

  • Dille M, Grocholsky B, Singh S (2010) Outdoor downward-facing optical flow odometry with commodity sensors. In: Howard A, Iagnemma K, Kelly A (eds) Field and service robotics. Springer tracts in advanced robotics, vol 62. Springer, Berlin, p 183–193

  • Dryanovski I, Valenti RG, Xiao J (2013) Fast visual odometry and mapping from RGB-D data. In: International Conference on IEEE anonymous robotics and automation 2013. IEEE, Piscataway, p 2305–2310

  • Dunbabin M, Roberts J, Usher K et al (2005) A hybrid AUV design for shallow water reef navigation. In: Proceedings of the 2005 IEEE International Conference on anonymous robotics and automation, 2005. IEEE, Piscataway, p 2105–2110

  • El-Rabbany A (2002) Introduction to GPS: the global positioning system. Artech House, London

    Google Scholar 

  • Engel J, Schops T, Cremers D (2014) LSD-SLAM: large-scale direct monocular SLAM. In: European Conference on computer vision, Zurich, p 834–849

  • Ericson E, Astrand B (2008) Visual odometry system for agricultural field robots. In: Anonymous Proceedings of the World Congress on engineering and computer science

  • Fabian JR, Clayton GM (2014a) Adaptive visual odometry using RGB-D cameras. In: International Conference on anonymous advanced intelligent mechatronics, 2014. IEEE, Piscataway, p 1533–1538

  • Fabian J, Clayton GM (2014b) Error analysis for visual odometry on indoor, wheeled mobile robots with 3-d sensors. IEEE/ASME Trans Mechatron 19(6):1896–1906

    Article  Google Scholar 

  • Fang Z, Zhang Y (2015) Experimental evaluation of RGB-D visual odometry methods. Int J Adv Robot Syst 12(3):26

  • Fernandez D, Price A (2004) Visual odometry for an outdoor mobile robot. In: Anonymous 2004 IEEE Conference on robotics, automation and mechatronics. IEEE, Piscataway, p 816–821

  • Forster C, Pizzoli M, Scaramuzza D (2014) SVO: fast semi-direct monocular visual odometry. In: 2014 IEEE International Conference on anonymous robotics and automation. IEEE, Piscataway, p 15–22

  • Fraundorfer F, Scaramuzza D (2012) Visual odometry: Part II: matching, robustness, optimization, and applications. IEEE Robot Autom Mag 19(2):78–90

    Article  Google Scholar 

  • Frontoni E (2012) Vision based mobile robotics: mobile robot localization using vision sensors and active probabilistic approaches. Lulu. com. ISBN-13:978-1471069772

  • García-García R, Sotelo MA, Parra I et al (2008) 3D visual odometry for road vehicles. J Intell Robot Syst 51(1):113–134

    Article  Google Scholar 

  • Golban C, Istvan S, Nedevschi S (2012) Stereo based visual odometry in difficult traffic scenes. In: Anonymous intelligent vehicles symposium (IV), 2012 IEEE. IEEE, Piscataway, p 736–741

  • Gonzalez R, Rodriguez F, Guzman JL et al (2012) Combined visual odometry and visual compass for off-road mobile robots localization. Robotica 30(6):865–878

    Article  Google Scholar 

  • Gonzalez R, Rodriguez F, Guzman JL et al (2013) Control of off-road mobile robots using visual odometry and slip compensation. Adv Robot 27(11):893–906

    Article  Google Scholar 

  • Goshtasby A, Gage SH, Bartholic JF (1984) A two-stage cross correlation approach to template matching. IEEE Trans Pattern Anal Mach Intell 3:374–378

    Article  Google Scholar 

  • Guo S, Meng C (2012) Monocular visual odometry and obstacle detection system based on ground constraints. In: Ge SS, Khatib O, Cabibihan J-J, Simmons R, Williams M-A (eds) Social robotics. Springer, Berlin, p 516–525

  • Hartley R (1997) In defense of the eight-point algorithm. IEEE Trans Pattern Anal Mach Intell 19(6):580–593

    Article  Google Scholar 

  • Hartley R, Zisserman A (2004) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Helmick DM, Cheng Y, Clouse DS, et al (2004) Path following using visual odometry for a mars rover in high-slip environments. In: Proceedings 2004 anonymous aerospace conference on IEEE, 2004. vol 2, IEEE, Piscataway, p 772–789

  • Horn J, Schmidt G (1995) Continuous localization of a mobile robot based on 3D-laser-range-data, predicted sensor images, and dead-reckoning. Robot Auton Syst 14(2):99–118

    Article  Google Scholar 

  • Horn BK, Schunck BG (1982) Determining optical flow. Artif Intell 17:185–203

    Article  Google Scholar 

  • Howard A (2008) Real-time stereo visual odometry for autonomous ground vehicles. In: Anonymous 2008 IEEE/RSJ International Conference on intelligent robots and systems. p 3946–3952

  • Huang AS, Bachrach A, Henry P et al (2011) Visual odometry and mapping for autonomous flight using an RGB-D camera. In: Anonymous International Symposium on robotics research. p 1–16

  • Jiang Y, Xu Y, Liu Y (2013) Performance evaluation of feature detection and matching in stereo visual odometry. Neurocomputing 120:380–390

    Article  Google Scholar 

  • Jiang D, Yang L, Li D et al (2014a) Development of a 3D ego-motion estimation system for an autonomous agricultural vehicle. Biosyst Eng 121:150–159

    Article  Google Scholar 

  • Jiang Y, Xiong G, Chen H et al (2014b) Incorporating a wheeled vehicle model in a new monocular visual odometry algorithm for dynamic outdoor environments. Sensors 14(9):16159–16180

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiménez A, Seco F (2005) Ultrasonic localization methods for accurate positioning. Instituto de Automatica Industrial, Madrid

    Google Scholar 

  • Johnson AE, Goldberg SB, Cheng Y et al (2008) Robust and efficient stereo feature tracking for visual odometry. In: IEEE International Conference on anonymous robotics and automation, 2008. IEEE, Piscataway, p 39–46

  • Jurie F, Dhome M (2002) Real time robust template matching. In: Proceedings of the 13th British machine vision conference (BMVC 2002), The British Machine Vision Association, Cardiff, UK, p 123–132

  • Kadir HA, Arshad M, Aghdam HH, et al (2015) Monocular visual odometry for in-pipe inspection robot. Jurnal Teknologi 74(9):35–40

  • Kerl C, Sturm J, Cremers D (2013) Robust odometry estimation for RGB-D cameras. In: 2013 IEEE International Conference on anonymous robotics and automation (ICRA), IEEE, Piscataway, p 3748–3754

  • Kicman P, Narkiewicz J (2013) Concept of integrated INS/visual system for autonomous mobile robot operation. Marine navigation and safety of sea transportation: navigational problems, CRC Press, p 35–40. ISBN: 978-1-138-00107-7

  • Kitt BM, Rehder J, Chambers AD et al (2011) Monocular visual odometry using a planar road model to solve scale ambiguity. In: Proceedings of the European conference on mobile robots, Örebro University, Sweden, p 43–48

  • Kreczmer B (2010) Objects localization and differentiation using ultrasonic sensors. INTECH Open Access Publisher, West Palm Beach

    Book  Google Scholar 

  • Krešo I, Ševrović M, Šegvić S (2013) A novel georeferenced dataset for stereo visual odometry. In:‏ Proceedings of the croatian computer vision workshop, CCVW 2013, University of Zagreb, Croatia, p 43–48‏

  • Lee B, Daniilidis K, Lee DD (2015) Online self-supervised monocular visual odometry for ground vehicles. In: IEEE International Conference on anonymous robotics and automation, 2015. IEEE, Piscataway, p 5232–5238

  • Li L, Lian J, Guo L et al (2013) Visual odometry for planetary exploration rovers in Sandy Terrains. Int J Adv Robot Syst 10:234. doi:10.5772/56342

    Google Scholar 

  • Lin LH, Lawrence PD, Hall R (2013) Robust outdoor stereo vision SLAM for heavy machine rotation sensing. Mach Vis Appl 24(1):205–226

    Article  Google Scholar 

  • Lingemann K, Nüchter A, Hertzberg J et al (2005) High-speed laser localization for mobile robots. Robot Auton Syst 51(4):275–296

    Article  Google Scholar 

  • Longuet-Higgins HC (1981) A computer algorithm for reconstructing a scene from two projections. Nature 293:133–135

    Article  ADS  Google Scholar 

  • Lovegrove S, Davison AJ, Ibañez-Guzmán J (2011) Accurate visual odometry from a rear parking camera. In: Proceedings of anonymous IEEE intelligent vehicles Symposium. p 788–793

  • Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  • Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. Int Jt Conf Artif Intell 3:674–679

    Google Scholar 

  • Mahmood A, Khan S (2012) Correlation-coefficient-based fast template matching through partial elimination. IEEE Trans Image Process 21(4):2099–2108

    MathSciNet  Article  PubMed  ADS  Google Scholar 

  • Maimone M, Cheng Y, Matthies L (2007) Two years of visual odometry on the mars exploration rovers. J Field Robot 24(3):169–186

    Article  Google Scholar 

  • Maklouf O, Adwaib A (2014) Performance evaluation of GPS INS main integration approach. World Acad Sci Eng Technol Int J Mech Aerosp Ind Mechatron Eng 8(2):476–484

    Google Scholar 

  • Martinez G (2013) Monocular visual odometry from frame to frame intensity differences for planetary exploration mobile robots. In: IEEE Workshop on Robot Vision (WORV), p 54–59

  • Martinez G (2015) Intensity-difference based monocular visual odometry for planetary rovers. In: Sun Y, Behal A, Ronald Chung C-K (eds) New development in robot vision, Springer, Berlin, p 181–198

  • Matthies L, Shafer S (1987) Error modeling in stereo navigation. IEEE J Robot Autom 3(3):239–248

    Article  Google Scholar 

  • McManus C, Furgale P, Barfoot TD (2013) Towards lighting-invariant visual navigation: an appearance-based approach using scanning laser-rangefinders. Robot Auton Syst 61(8):836–852

    Article  Google Scholar 

  • Morales Y, Tsubouchi T (2007) DGPS, RTK-GPS and StarFire DGPS performance under tree shading environments. In: IEEE International Conference on anonymous integration technology, 2007. IEEE, Piscataway, p 519–524

  • Moravec H (1980) Obstacle avoidance and navigation in the real world by a seeing robot rover. Stanford Univ., Stanford (Ph.D. Dissertation)

    Google Scholar 

  • Mouats T, Aouf N, Sappa AD et al (2014) Multispectral stereo odometry. IEEE Trans Transp Syst 16:1210–1224

    Article  Google Scholar 

  • Munguia R, Gra A (2007) Monocular SLAM for visual odometry. In: IEEE International Symposium on anonymous intelligent signal processing, 2007. IEEE, Piscataway, p 1–6

  • Mur-Artal R, Montiel JM, Tardós JD et al (2015) ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans Robot 31(5):1147–1163

    Article  Google Scholar 

  • Nagatani K, Ikeda A, Ishigami G et al (2010) Development of a visual odometry system for a wheeled robot on loose soil using a telecentric camera. Adv Robot 24(8–9):1149–1167

    Article  Google Scholar 

  • Naroditsky O, Zhou XS, Gallier J et al (2012) Two efficient solutions for visual odometry using directional correspondence. IEEE Trans Pattern Anal Mach Intell 34(4):818–824

    Article  PubMed  Google Scholar 

  • Ni K, Dellaert F (2006) Stereo tracking and three-point/one-point algorithms-a robust approach in visual odometry. In: IEEE International Conference on anonymous image processing, 2006. IEEE, Piscataway, p 2777–2780

  • Nistér D (2004) An efficient solution to the five-point relative pose problem. IEEE Trans Pattern Anal Mach Intell 26(6):756–770

    Article  PubMed  Google Scholar 

  • Nistér D, Naroditsky O, Bergen J (2004) Visual odometry. In: Anonymous Proceedings of the IEEE computer society conference on computer vision and pattern recognition, vol 1, IEEE, Piscataway, p I652–I659

  • Nistér D, Naroditsky O, Bergen J (2006) Visual odometry for ground vehicle applications. J Field Robot 23(1):3–20

    Article  MATH  Google Scholar 

  • Nourani-Vatani N, Borges PVK (2011) Correlation-based visual odometry for ground vehicles. J Field Robot 28(5):742–768

    Article  MATH  Google Scholar 

  • Nourani-Vatani N, Pradalier C (2010) Scene change detection for vision-based topological mapping and localization. In: IEEE/RSJ International Conference on robots and systems. IEEE, Piscataway, p 3792–3797

  • Nourani-Vatani N, Roberts J, Srinivasan MV (2009) Practical visual odometry for car-like vehicles. In: IEEE International Conference on anonymous robotics and automation, 2009. IEEE, Piscataway, p 3551–3557

  • Parra I, Sotelo M, Llorca DF et al (2010) Robust visual odometry for vehicle localization in urban environments. Robotica 28(03):441–452

    Article  Google Scholar 

  • Piyathilaka L, Munasinghe R (2010) An experimental study on using visual odometry for short-run self localization of field robot. In: 5th International Conference on anonymous information and automation for sustainability, 2010 IEEE, Piscataway, p 150–155

  • Rizos C, Satirapod C (2010) Contribution of GNSS CORS infrastructure to the mission of modern geodesy and status of GNSS CORS in Thailand. Eng J 15(1):25–42

    Article  Google Scholar 

  • Rone W, Ben-Tzvi P (2013) Mapping, localization and motion planning in mobile multi-robotic systems. Robotica 31(1):1–23

    Article  Google Scholar 

  • Royer E, Lhuillier M, Dhome M et al (2007) Monocular vision for mobile robot localization and autonomous navigation. Int J Comput Vis 74(3):237–260

    Article  MATH  Google Scholar 

  • Sanchez A, de Castro A, Elvira S et al (2012) Autonomous indoor ultrasonic positioning system based on a low-cost conditioning circuit. Measurement 45(3):276–283

    Article  Google Scholar 

  • Scaramuzza D, Fraundorfer F (2011) Tutorial: visual odometry. IEEE Robot Autom Mag 18(4):80–92

    Article  Google Scholar 

  • Scaramuzza D, Siegwart R (2008a) Appearance-guided monocular omnidirectional visual odometry for outdoor ground vehicles. IEEE Trans Robot 24(5):1015–1026

    Article  Google Scholar 

  • Scaramuzza D, Siegwart R (2008b) Monocular omnidirectional visual odometry for outdoor ground vehicles. Springer, Berlin

    Book  Google Scholar 

  • Scaramuzza D, Fraundorfer F, Pollefeys M et al (2009) Absolute scale in structure from motion from a single vehicle mounted camera by exploiting nonholonomic constraints. In: IEEE 12th International Conference on anonymous computer vision, 2009. IEEE, Piscataway, p 1413–1419

  • Scaramuzza D, Fraundorfer F, Pollefeys M (2010) Closing the loop in appearance-guided omnidirectional visual odometry by using vocabulary trees. Robot Auton Syst 58(6):820–827

    Article  Google Scholar 

  • Siddiqui R, Khatibi S (2014) Robust visual odometry estimation of road vehicle from dominant surfaces for large-scale mapping. IET Intell Transp Syst 9(3):314–322

    Article  Google Scholar 

  • Soltani H, Taghirad H, Ravari AN (2012) Stereo-based visual navigation of mobile robots in unknown environments. In: 20th Iranian Conference on anonymous electrical engineering (ICEE), 2012. IEEE, Piscataway, p 946–951

  • Souici A, Courdesses M, Ouldali A (2013) Full-observability analysis and implementation of the general SLAM model. Int J Syst Sci 44(3):568–581

    MathSciNet  Article  MATH  Google Scholar 

  • Steinbrücker F, Sturm J, Cremers D (2011) Real-time visual odometry from dense RGB-D images. In: IEEE International Conference on anonymous computer vision workshops, 2011. IEEE, Piscataway, p 719–722

  • Stewenius H, Engels C, Nistér D (2006) Recent developments on direct relative orientation. ISPRS J Photogramm Remote Sens 60(4):284–294

    Article  ADS  Google Scholar 

  • Sünderhauf N, Protzel P (2007) Stereo odometry—a review of approaches. Chemnitz University of Technology, Chemnitz (Technical Report)

    Google Scholar 

  • Takahashi T (2007) 2D localization of outdoor mobile robots using 3D laser range data. Doctoral dissertation, Carnegie Mellon University

  • Tardif J, Pavlidis Y, Daniilidis K (2008) Monocular visual odometry in urban environments using an omnidirectional camera. In: IEEE/RSJ International Conference on anonymous intelligent robots and systems, 2008. IEEE, Piscataway, p 2531–2538

  • Valiente García D, Fernández Rojo L, Gil Aparicio A et al (2012) Visual odometry through appearance-and feature-based method with omnidirectional images. J Robot 2012:1-13. doi:10.1155/2012/797063

    Article  Google Scholar 

  • Van Hamme D, Goeman W, Veelaert P et al (2015) Robust monocular visual odometry for road vehicles using uncertain perspective projection. EURASIP J Image Video Process 1:1–21

    Google Scholar 

  • Villanueva-Escudero C, Villegas-Cortez J, Zúñiga-López A et al (2014) Monocular visual odometry based navigation for a differential mobile robot with android OS. In: Human-inspired computing and its applications. Proceedings of the 13th mexican international conference on artificial intelligence, MICAI 2014, Tuxtla Gutiérrez, Mexico, November 16–22, 2014. Part I. Springer International Publishing, p 281–292

  • Wang C, Zhao C, Yang J (2011) Monocular odometry in country roads based on phase-derived optical flow and 4-DOF ego-motion model. Ind Robot 38(5):509–520

    CAS  Article  Google Scholar 

  • Wang D, Liang H, Zhu H et al (2014) A bionic camera-based polarization navigation sensor. Sensors 14(7):13006–13023

    Article  PubMed  PubMed Central  Google Scholar 

  • Whelan T, Johannsson H, Kaess M et al (2013) Robust real-time visual odometry for dense RGB-D mapping. In: IEEE International Conference on anonymous robotics and automation, 2013. IEEE, Piscataway, p 5724–5731

  • Woodman OJ (2007) An introduction to inertial navigation. University of Cambridge, Computer Laboratory, Technical Report (UCAMCL-TR-696), ISSN 1476-2986

  • Wu FC, Hu ZY, Duan FQ (2005) 8-point algorithm revisited: Factorized 8-point algorithm. In Tenth IEEE International Conference on computer vision. vol 1, IEEE, Piscataway, 488–494.‏

  • Yoo J, Hwang SS, Kim SD et al (2014) Scale-invariant template matching using histogram of dominant gradients. Pattern Recognit 47(9):3006–3018

    Article  Google Scholar 

  • Yu Y, Pradalier C, Zong G (2011) Appearance-based monocular visual odometry for ground vehicles. In: IEEE/ASME International Conference on anonymous advanced intelligent mechatronics, 2011. IEEE, Piscataway, p 862–867

  • Zhang AM, Kleeman L (2009) Robust appearance based visual route following for navigation in large-scale outdoor environments. Int J Robot Res 28(3):331–356

    Article  Google Scholar 

  • Zhang J, Singh S, Kantor G (2014) Robust monocular visual odometry for a ground vehicle in undulating terrain. In: Yoshida K, Tadokoro S (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol. 92. Springer, Berlin, p 311–326

  • Zhao F, Huang Q, Gao W (2006a) Image matching by multiscale oriented corner correlation. In: Narayanan PJ, Nayar SK, Shum H-Y (eds) Computer Vision – ACCV 2006. Proceedings of the 7th Asian conference on computer vision, Hyderabad, India, January 13–16, 2006. Part I. Lecture Notes in Computer Science, vol. 3851. Springer, Berlin, p 928–937

  • Zhao F, Huang Q, Gao W (2006b) Image matching by normalized cross-correlation. In: Proceedings of 2006 IEEE International Conference on anonymous acoustics, speech and signal processing, 2006. vol 2, IEEE, Piscataway, p 2

  • Zienkiewicz J, Davison A (2014) Extrinsics autocalibration for dense planar visual odometry. J Field Robot 32:803–825

    Article  Google Scholar 


Page 2

Sensor/technology Advantages Disadvantages
Wheel odometry Simple to determine position/orientation Short term accuracy, and allows high sampling rates

Low cost solution

Position drift due to wheel slippage Error accumulation over time

Velocity estimation requires numerical differentiation that produces additional noise

INS Provides both position and orientation using 3-axis accelerometer and gyroscope
Not subject to interference outages
Position drift (position estimation requires second-order integral)
Have long-term drift errors
GPS/GNSS Provides absolute position with known value of error
No error accumulation over time
Unavailable in indoor, underwater, and closed areas
Affected by RF interference
Ultrasonic sensor Provides a scalar distance measurement from sensor to object
Inexpensive solution
Reflection of signal wave is dependent on material or orientation of obstacle surface Suffer from interference if multiple sensors are used

Low angular resolution and scan rate

Laser sensor Similar to sonar sensors but has higher accuracy and scan rate
Return the distance to a single point (rangefinder) or an array of distances (scanner)
Reflection of signal wave is dependent on material or orientation of obstacle surface
Expensive solution
Optical camera Images store a huge meaningful information Provide high localization accuracy

Inexpensive solution

Requires image-processing and data-extraction techniques
High computational-cost to process images