Phương trình bậc 2 và hệ thức Viet

Nhóm thuvientoan.net xin gửi đến các bạn đọc tài liệu Phương trình bậc hai và ứng dụng của định lý Vi-et.

Tài liệu gồm 101 trang tuyển chọn lý thuyết và bài tập về phương trình bậc hai và các bài toán liên quan đến định lý Viete. Nội dung cụ thể bao gồm:

Chủ đề 1. Phương trình bậc hai một ẩn 1. Kiến thức cần nhớ 2. Bài tập vận dụng Dạng 1. Giải phương trình bậc hai một ẩn Dạng 2. Tìm điều kiện để phương trình bậc hai có nghiệm Dạng 3. Nghiệm nguyên, nghiệm hữu tỷ của phương trình bậc hai Dạng 4. Tìm giá trị của m để phương trình có hai nghiệm chung

Dạng 5. Chứng minh trong một hệ các phương trình bậc 2 có một phương trình có nghiệm.

Dạng 6. Ứng dụng của phương trình bậc hai trong chứng minh bất đẳng thức và tìm GTNN và GTLN
Chủ đề 2. Khai thác các ứng dụng của định lý Vi-ét A. Kiến thức cần nhớ B. Các ứng dụng của định lý vi-et Dạng 1: Giải phương trình bậc 2 bằng cách tính nhẩm nghiệm Dạng 2: Tính giá trị biểu thức giữa các nghiệm của phương trình Dạng 3. Tìm hia số khi biết tổng và tích Dạng 4. Phân tích tam thức tam thức bậc hai thành nhân tử

Dạng 5. Tìm tham số để phương trình bậc hai có một nghiệm x = x1. Tìm nghiệm thứ hai.

Dạng 6. Xác định tham số để phương trình có nghiệm thỏa mãn một hệ điều kiện cho trước.

Dạng 7. Lập phương trình bậc hai khi biết hai nghiệm của nó hoặc hai nghiệm của nó liên quan đến hai nghiệm của một phương trình đã cho.

Dạng 8. Tìm hệ thức liên hệ giữa hai nghiệm của phương trình bậc hai, không phụ thuộc vào tham số.

Dạng 9. Chứng minh hệ thức liên hệ giữa các nghiệm của phương trình bậc hai, hoặc hai nghiệm của phương trình bậc 2.

Dạng 10. Xét dấu các nghiệm của phương trình bậc hai, so sách các nghiệm của phương trình bậc hai với một số cho trước.

Dạng 11. Nghiệm chung của hai hay nhiều phương trình, hai phương trình tương đương

Dạng 12. Ứng dụng của hệ thức vi-et các bài toán số học Dạng 13. Ứng dụng của hệ thức vi-et giải phương trình, hệ phương trình

Dạng 14. Ứng dụng hệ thức vi-ét chứng minh đẳng thức, bất đẳng thức, tìm GTLN và GTNN

Dạng 15. Vận dụng định lý vi-et vào các bài toán hàm số Dạng 16. Ứng dụng địng lý Vi-ét trong các bài toán hình học Bài tập rèn luyện tổng hợp Hướng dẫn giải

Bài tập không lời giải

Nhóm thuvientoan.net hy vọng với tài liệu Phương trình bậc hai và ứng dụng của định lý Vi-et, các bạn sẽ học tập được những điều bổ tích và chuẩn bị thật tốt cho các kỳ thi HSG cũng như kỳ thi vào lớp 10 chuyên Toán sắp tới. Chúc các bạn học tốt!

Phương trình bậc 2 và hệ thức Viet

Tài liệu

Like fanpage của thuvientoan.net để cập nhật những tài liệu mới nhất: https://bit.ly/3g8i4Dt.

THEO THUVIENTOAN.NET

Định lý Vi-et học sinh được học từ lớp 9, gồm có định lý thuận và định lý đảo. Định lý cho ta mối quan hệ giữa các nghiệm của phương trình bậc hai và các hệ số của nó.

Định lý

Phương trình bậc 2 và hệ thức Viet

Định lý Viet bậc 2

Trong đó:

  • Với x là ẩn số; x1 x2 là nghiệm của phương trình
  • a, b, c là các số đã biết sao cho a≠0; a, b, c là những hệ số của phương trình và có thể phân biệt bằng cách gọi tương ứng với hệ số của x
  • a là hệ số bậc hai
  • b là hệ số bậc một
  • c là hằng số hay số hạng tự do

Phương pháp giải phương trình bậc 2

Giải phương trình bậc 2: a+bx+c=0 (a≠0) theo biệu thức delta (Δ):

Đặt Δ=4ac

  • Nếu Δ < 0 thì phương trình vô nghiệm.
  • Nếu Δ = 0 thì phương trình có nghiệm kép x1 = x2 = b / 2a
  • Nếu Δ > 0 thì phương trình bậc 2 có hai nghiệm x1, x2

Phương trình bậc 2 và hệ thức Viet

Nghiệm của phương trình bậc 2

Dấu nghiệm của phương trình bậc 2

Phương trình bậc 2 và hệ thức Viet

Xác định dấu nghiệm của phương trình bậc 2

Một số đẳng thức cần lưu ý

Phương trình bậc 2 và hệ thức Viet

Một số đẳng thức cần lưu ý

Các trường hợp nghiệm của phương trình bậc 2

Phương trình bậc 2 và hệ thức Viet

Các trường hợp nghiệm của phương trình bậc 2

Các trường hợp đặc biệt

  • a + b + c = 0 (với a, b, c là các hệ số của phương trình bậc 2, a khác 0) thì nghiệm của phương trình là: x1 = 1; x2 = c / a
  • a – b + c =0 (với a, b, c là các hệ số của phương trình bậc 2, a khác 0) thì nghiệm phương trình là: x1 = 1; x2= c / a
  • Nếu ac < 0 (a, c trái dấu nhau) thì phương trình luôn có 2 nghiệm phân biệt.

Ứng dụng định lý Viet bậc 2

Dạng 1: Biểu thức liên hệ giữa 2 nghiệm

Phân tích: Trong khi làm các bài tập dạng này, học sinh cần lưu ý sự tồn tại nghiệm của phương trình, sau đó biểu diễn các biểu thức qua x1 + x2 và x1.x2 để có thể sử dụng định lý Vi-et. Các hằng đẳng thức hay dùng là:

a² + b² = (a+b)² – 2ab

a³ + b³ = (a+b)³ -3ab(a+b)

Ví dụ 1:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 1

Ví dụ 2:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 2

Ví dụ 3:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 3

Ví dụ 4:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 4

Dạng 2: Giải hệ đối xứng kiểu 1

Phân tích:Hệ đối xứng hai ẩn kiểu 1 là hệ gồm hai phương trình, hai ẩn, trong đó nếu ta hoán đổi vai trò các ẩn trong từng phương trình thì mỗi phương trình đều không thay đổi. Để giải hệ đối xứng kiểu 1 bằng cách sử dụng định lý Vi-et, ta thường biểu diễn các phương trình qua tổng và tích của hai ẩn đó. Các hằng đẳng thức hay dùng là:

a² + b² = (a+b)² – 2ab

a³ + b³ = (a+b)³ -3ab(a+b)

(a²)² + (b²)² = (a²+b²)² – 2a²b²

Ví dụ 5

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 5

Ví dụ 6

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 6

Ví dụ 7

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 7

Ví dụ 8

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 8

Dạng 3: Chứng minh bất đẳng thức

Phân tích: Định lý Vi-et vẫn có thể sử dụng để chứng minh bất đẳng thức. Tất nhiên ở đây ta hiểu là dùng nó để biến đổi trung gian.

Để có thể sử dụng định lý Vi-et, thông thường các dữ kiện của bài toán thường đưa về được
dưới dạng tổng và tích các ẩn. Quá trình chứng minh ta có thể sử dụng định lý về dấu của tam thức bậc hai, bất đẳng thức cổ điển, các phép biến đổi tương đương…

Ví dụ 9:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 9

Ví dụ 10:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 10

Ví dụ 11:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 11

Ví dụ 12:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 12

Ví dụ 13:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 13

Dạng 4: Ứng dụng vào bài toán tính cực trị của hàm số

Phân tích: Đây là dạng bài tập phổ biến trong các đề thi Đại học, cao đẳng những năm gần đây. Điều quan trọng ở trong dạng bài tập này là học trò làm sao biểu diễn được tọa độ điểm cực trị một cách gọn gàng và nhanh chóng nhất. Để làm được điều đó, học sinh phải biết tọa độ các điểm cực trị nghiệm đúng phương trình nào?

Để tiện trong việc giải các bài tập về cực trị, ta cần lưu ý các kiến thức liên quan đến: Định lý Phec-ma

Dạng 5: Ứng dụng vào bài toán tiếp tuyến

Phân tích: Bài tập về tiếp tuyến thường liên quan tới các điều kiện tiếp xúc của đường cong và đường thẳng. Cần làm cho học sinh thấy rõ tọa độ điểm tiếp xúc thường là nghiệm của một phương trình nào đó mà ta có thể đưa về bậc hai để sử dụng định lý Vi-et. Các kỹ thuật về nhẩm nghiệm cần được sử dụng tốt ở dạng bài tập này.

Ví dụ 14:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Viet – ví dụ 14

Ví dụ 15:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 15

Ví dụ 16:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 16

Dạng 6: Tương giao của 2 đồ thị và tập hợp điểm.

Phân tích: Đây cũng là dạng bài tập hay gặp trong các kỳ thi tuyển sinh. Công việc đầu tiên học sinh cần làm là viết phương trình hoành độ giao điểm. Từ phương trình đó, sử dụng định lý Viet để biểu diễn các biểu thức đề bài yêu cầu qua hệ số của phương trình. Cuối cùng là đánh giá biểu thức đó thông qua các hệ số vừa thay vào.

Ví dụ 17:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 17

Ví dụ 18:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 18

Dạng 7: Ứng dụng của 1 hệ thức truy hồi

Phương trình bậc 2 và hệ thức Viet

Hệ thức truy hồi

Việc ứng dụng hệ thức truy hồi trên giúp ta giải quyết được nhiều dạng bài tập thú vị. Ta hãy theo dõi qua các ví dụ sau!

Ví dụ 19:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 19

Ví dụ 20:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 20

Ví dụ 21:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Viet – ví dụ 21

Dạng 8: So sánh nghiệm của tam thức bậc 2 với 1 số

Phân tích: Từ năm học 2006-2007 trở đi , bài toán định lý đảo về dấu của tam thức bậc hai và bài toán so sánh nghiệm của tam thức bậc hai với một số thực bất kỳ không còn được trình bày trong chương trình chính khóa. Đây là ý tưởng giảm tải của Bộ giáo dục và đào tạo.

Tuy nhiên qua quá trình giảng dạy và cho học sinh làm bài tập, tôi thấy nhiều bài toán nếu biết sử dụng định lý đảo và bài toán so sánh nghiệm thì lời giải sẽ ngắn gọn hơn nhiều. Định lý đảo về dấu được phát biểu như sau:

Phương trình bậc 2 và hệ thức Viet

Định lý đảo về dấu

Ví dụ 22:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 22

Ví dụ 23:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 23

Định lý Viet bậc 3

Nếu phương trình bậc ba: a+b+cx+d=0 (a≠0) có 3 nghiệm x1, x2, x3 thì:

Phương trình bậc 2 và hệ thức Viet

Định lý Viet bậc 3

Trong đó:

  • Với x là ẩn số; x1 x2 x3 là nghiệm của phương trình
  • a, b, c, d là các số đã biết sao cho a≠0; a, b, c, d là những hệ số của phương trình và có thể phân biệt bằng cách gọi tương ứng với hệ số của x
  • a là hệ số bậc ba
  • b là hệ số bậc hai
  • c là hệ số bậc một
  • d là hằng số hay số hạng tự do

Định lý Viet bậc 4

Nếu phương trình bậc ba: a(x²)²+b+cx+d=0 (a≠0) có 4 nghiệm x1, x2, x3, x4 thì:

Phương trình bậc 2 và hệ thức Viet

Định lý Viet bậc 4

Trong đó:

  • Với x là ẩn số; x1 x2 x3 x4 là nghiệm của phương trình
  • a, b, c, d, e là các số đã biết sao cho a≠0; a, b, c, d, e là những hệ số của phương trình và có thể phân biệt bằng cách gọi tương ứng với hệ số của x
  • a là hệ số bậc bốn
  • b là hệ số bậc ba
  • c là hệ số bậc hai
  • d là hệ số bậc một
  • e là hằng số hay số hạng tự do

Định lý Viet tổng quát

Định lý

Phương trình bậc 2 và hệ thức Viet

Định lý Viet tổng quát

Ngược lại nếu có các số x1 ;x2 ;…xn thỏa mãn hệ (I) thì chúng là nghiệm của phương trình (1)

Ứng dụng

Ứng dụng giải hệ phương trình

Phân tích : Thông thường các hệ thường gặp ở dạng đối xứng. Khi đó ta tìm cách biểu diễn các phương trình trong hệ qua các biểu thức đối xứng sơ cấp đó là : x+y+z ; xy+yz+zx ; xyz (đối với hệ 3 ẩn). Ta cần sử dụng các hằng đẳng đối xứng:

a² + b² = (a+b)² – 2ab

a³ + b³ = (a+b)³ -3ab(a+b)

để biến đổi hệ, sau đó sử dụng định lý Vi-et đảo để đưa về phương trình đa thức và giải phương trình đó. Cuối cùng nghiệm của hệ chính là các bộ số hoán vị các nghiệm.

Ví dụ 24:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Viet – ví dụ 24

Ví dụ 25:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 25

Ứng dụng tính các biểu thức lượng giác

Phân tích: Đây là dạng bài tập hay gặp trong các kỳ thi học sinh giỏi tỉnh. Ở dạng bài tập này, học sinh cần chỉ ra được các số hạng trong biểu thức chính là nghiệm của phương trình đại số nào.

Sau khi chỉ ra được rồi, cần sử dụng định lý Viet để kết nối các mối quan hệ giữa các số hạng đó. Học sinh cần thuần thục trong các biểu diễn lượng giác, đặc biệt là các công thức về góc nhân.

Tìm hiểu thêm các công thức lượng giác tại đây: CÔNG THỨC LƯỢNG GIÁC!

Ví dụ 26:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 26

Ví dụ 27:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 27

Ứng dụng chứng minh bất đẳng thức

Phân tích: Khi cần chứng minh các bất đẳng thức giữa các hệ số của phương trình, ta cần biến đổi chúng về các tỉ số thích hợp, thông thường là bằng cách chia cho hệ số chứa xn để có thể sử dụng được định lý Vi-et. Việc chứng minh bất đẳng thức về hệ số chuyển sang chứng minh bất đẳng thức giữa các nghiệm.

Do định lý Viet phải biểu theo các biểu thức đối xứng, nên cuối cùng bất đẳng thức thu được cũng thường đối xứng. Đây là một điều thuận lợi, vì bất đẳng thức đối xứng thường dễ chứng minh hơn.

Ví dụ 28:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 28

Ví dụ 29:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 29

Ví dụ 30:

Phương trình bậc 2 và hệ thức Viet

Ứng dụng định lý Vi-et – ví dụ 30

Bài viết có sử dụng nguồn: THPT Phan Bội Châu – Bình Dương

Bài viết tham khảo: Tổng hợp kiến thức về định lý Talet!

Bài viết tham khảo: Tổng hợp kiến thức về định lý Pytago!

Bài viết tham khảo: Tổng hợp kiến thức về định lý hàm Cosin!

Bài viết tham khảo: Tổng hợp kiến thức về định lý Ceva!

Bài viết tham khảo: Tổng hợp kiến thức về định lý Menelaus

Chuyên mục tham khảo: Toán học

Website liên kết: KHS247

Nếu các bạn có bất cứ thắc mắc hay cần tư vấn về thiết bị dịch vụ vui lòng comment phía dưới hoặc Liên hệ chúng tôi!

Chúng tôi luôn sẵn sàng đem lại những giá trị tốt đẹp cho cộng đồng!

Youtobe Facebook Twitter