Hệ phương trình tuyến tính tổng quát có nghiệm khi nào?

Chương 3:HỆ PHƯƠNG TRÌNH TUYẾN TÍNH(LÝ THUYẾT TỔNG QUÁT)Ta đã biết một phương pháp sơ cấp để giải hệ pttt (pp Gauss). Chương này sẽ đưa thêm một phương pháp khác để khảo sát hệ pttt một cách tổng quát hơn nhờ vào công cụ ma trận và định thức.Các vấn đề định tính và định lượng, chẳng hạn: Khi nào hệ có nghiệm? Có bao nhiêu nghiệm? Mô tả tập hợp nghiệm? Tìm nghiệm? Sẽ được giải đáp trong chương quan trọng này.Tât nhiên trong thực hành ta có thể kết hợp nhiều phương pháp để cho kết quả nhanh chóng và gọn gàng nhất!!Trước tiên ta xét hai phương pháp là phương pháp ma trận và phương pháp định thức để giải một loại hệ đặc biệt là: Hệ Cramer§ 1: Phương pháp ma trận và định thức1. Hệ Cramer:Định nghĩa: Hệ Cramer là hệ pttt thỏa mãn 2 điều kiện:Số phương trình bằng số ẩn.Ma trận hệ số không suy biến ()Ví dụ: Hãy cho biết hệ sau có là hệ Cramer?Giải:Hiển nhiên: số PT = số ẩn ()Vậy hệ đã cho là hệ Cramer.2. Phương pháp ma trận.Một hệ pttt luôn viết được dưới dạng ma trận: AX = B (1)Nếu hệ (1) là hệ Cramer thì . Từ đó, Như vậy, Hệ Cramer luôn có nghiệm duy nhất: Phương pháp giải hệ nhờ công thức trên được gọi là phương pháp ma trậnVí dụ: Giải hệ sau bằng phương pháp ma trận (phương pháp ma trận nghịch đảo):Giải:Hệ trên là hệ Cramer nên nó có nghiệm duy nhất: Vậy nghiệm duy nhất là: 3. Phương pháp định thức (Quy tắc Cramer)GABRIEL CRAMER ( 1704 – 1752)Gabriel Cramer sinh ngày 31/7/1704 tại Geneva, Thụy Sĩ mất 4/1/1752 ở Bangnols-sur-ceze Pháp, Gabriel có rất nhiều cố gắng trong việc học tập.Năm 1722, khi mới 18 tuổi ông đã đạt được học vị tiến sĩ cho luận án dựa trên lý thuyết của âm thanh. Cramer nổi tiếng là một người biên soạn thiên tài. Cuốn sách nổi tiếng nhất của ông là “ Introduction à l’analyse des lignes courbes algébraique”, trong đó có qui tắc Cramer nổi tiếng.Định lý sau đây còn gọi là Quy tắc Cramer:Định lý: Hệ Cramer n ẩn số luôn có nghiệm duy nhất xác định bởi công thức: Trong đó, , A - ma trận hệ sốChứng minh:Hệ Cramer luôn có nghiệm duy nhất:Các cột còn lại giống hệt của dCột thứ j Chính là Ví dụ: Giải hệ sau bằng quy tắc CramerGiải:Hệ trên là hệ Cramer nên nó có nghiệm duy nhất: Cột số hạng tự doVậy nghiệm duy nhất là: Ví dụ: Tìm m để hệ sau đây là hệ Cramer, khi đó hãy giải hệ bằng quy tắc Cramer.Giải:Hệ đã cho là hệ Cramer Khi đó, hệ có nghiệm duy nhất: Vậy nghiệm duy nhất là:………….21 ………….

1. Dạng biểu diễn ma trận.

Ví dụ: Xét hệ 3 phương trình tuyến tính 4 ẩn số sau đây:

\(\left\{ \begin{array}{l} 2{x_1} - {x_2} + {x_3} - 3{x_4} = 1\\ {x_1} - 4{x_3} + 5{x_4} = - 2\\ - 2{x_2} + {x_4} = 0 \end{array} \right.\)

Đặt \(A = \left( {\begin{array}{*{20}{c}} 2&{ - 1}&1&{ - 3}\\ 1&0&{ - 4}&5\\ 0&{ - 2}&0&1 \end{array}} \right),\,X = ({x_1};{x_2};{x_3};{x_4}) = \left( \begin{array}{l} {x_1}\\ {x_2}\\ {x_3}\\ {x_4} \end{array} \right)\,\,và\,B = \left( \begin{array}{l} 1\\ - 2\\ 0 \end{array} \right)\)

Khi đó, hệ phương trình trên có thể viết lại dưới dạng ma trận là: AX = B.

Trong trường hợp tổng quát, ta xét hệ m phương trình tuyến tính n ẩn như sau: 

\(\left\{ \begin{array}{l} {a_{11}}{x_1} + {a_{12}}{x_2} + .... + {a_{1n}}{x_n} = {b_1}\\ {a_{21}}{x_1} + {a_{22}}{x_2} + .... + {a_{2n}}{x_n} = {b_2}\\ ................................\\ {a_{m1}}{x_1} + {a_{m2}}{x_2} + .... + {a_{mn}}{x_n} = {b_m} \end{array} \right.\)

Đặt \(A = {({a_{{\rm{ij}}}})_{m\,x\,n}},\,X = \left( \begin{array}{l} {x_1}\\ .\\ .\\ .\\ {x_n} \end{array} \right),\,B = \left( \begin{array}{l} {b_1}\\ .\\ .\\ .\\ {b_n} \end{array} \right)\). Khi đó, hệ phương trình trên có thể viết lại dưới dạng ma trận là AX = B.

  • Ma trận \(A_{m x n}\) gọi là ma trận hệ sổ của hệ phương trình.
  • Ma trận \(\overline A = (A|B)\) gọi là ma trận hệ số mở rộng của hệ phương trình.
  • X gọi là vectơ ẩn.

2. Giải hệ phương trình tuyến tính bằng phương pháp Gauss.

Một phương pháp thông dụng để giải hệ phương trình tuyến tính là phương pháp Gauss, đưa ma trận hệ số mở rộng \(\overline A \) về dạng bậc thang hay bậc thang thu gọn, nhờ các phép biến đổi sơ cấp trên dòng.

Ví dụ: Giải hệ phương trình tuyến tính

\(\left\{ \begin{array}{l} {x_1} - 2{x_2} - {x_3} = - 6\\ 2{x_1} - {x_2} + {x_3} = 3\\ {x_1} + {x_3} = 4 \end{array} \right.\,\,\,(I)\)

Giải:

Ma trận hệ số mở rộng của (I) là :

Hệ phương trình tuyến tính tổng quát có nghiệm khi nào?

Ta có hệ phương trình (I) tương đương:

\(\left\{ \begin{array}{l} {x_1} + {x_3} = 4\\ {x_2} + {x_3} = 5 \end{array} \right.\,\,\,hay\,\,\left\{ \begin{array}{l} {x_1} = 4 - {x_3}\\ {x_2} = 5 - {x_3} \end{array} \right.\)

Cho \({x_3} = \alpha \in R\), nghiệm của hệ là  \({x_1} = 4 - \alpha ,{x_2} = 5 - \alpha ,{x_3} = \alpha \)

Như thế, hệ phương trình có vô số nghiệm với nghiệm tổng quát là:

\(X = (4 - \alpha ;5 - \alpha ;\alpha );\alpha \in R\)

Ví dụ: Giải hệ phương trình tuyến tính

\(\left\{ \begin{array}{l} {x_1} - {x_2} = - 1\\ 2{x_1} + {x_2} - {x_3} = 1\\ {x_2} + {x_3} = 5 \end{array} \right.\,\,\,(I)\)

Giải

Ma trận hệ số mở rộng của (I) là:

Hệ phương trình tuyến tính tổng quát có nghiệm khi nào?

Hệ phương trình tuyến tính tổng quát có nghiệm khi nào?

Ta có hệ phương trình tương đương \(\left\{ \begin{array}{l} {x_1} = 1\\ {x_2} = 2\\ {x_3} = 3 \end{array} \right.\)

Vậy hệ có nghiệm duy nhất X = (1;2;3)

Ví dụ: Giải hệ phương trình tuyến tính

\(\left\{ \begin{array}{l} {x_1} + {x_2} - 2{x_3} = 1\\ 2{x_1} + {x_3} = 0\\ 4{x_1} + 2{x_2} - 3{x_3} = 3 \end{array} \right.\,\,(I)\)

Giải: Ma trận hệ số mở rộng của (I) là

Hệ phương trình tuyến tính tổng quát có nghiệm khi nào?

Ta có hệ phương trình tương đương: \(\left\{ \begin{array}{l} {x_1} + {x_2} - 2{x_3} = 1\\ - 2{x_2} + 5{x_3} = - 2\\ 0 = 1 \end{array} \right.\)

Vậy hệ phương trình vô nghiệm

3. Định lý Cronecker - Capelli

Xét hệ phương trình tuyến tính: AX = B với \({A_{m\,x\,n}},\,{X_{n\,\,x\,1}},\,{B_{m\,x\,1}}\)

Ta có:

  •  Hệ có nghiệm duy nhất \(\Leftrightarrow R(A) = R(\overline A ) = n\)
  •  Hệ có vô số nghiệm  \(\Leftrightarrow R(A) = R(\overline A ) = k < n\)
    • Khi đó, hệ phương trình có k ẩn chính ứng với k phần tử dẫn đầu và n - k ẩn tự do, được chuyển sang vế phải.
  • Hệ vô nghiệm \( \Leftrightarrow R(A) < R(\overline A )\)

Ví dụ: Giải hệ phương trình tuyến tính

\(\left\{ \begin{array}{l} {x_1} + {x_2} - {x_3} = 2\\ 2{x_1} + {x_3} = 1\\ {x_2} + 2{x_3} = - 2 \end{array} \right.\,(I)\)

Ma trận hệ số mở rộng của (I) là

Hệ phương trình tuyến tính tổng quát có nghiệm khi nào?

Ta có: \(R(A) = R(\overline {A)} = 3\) số ẩn

Vậy hệ có nghiệm duy nhất: X = (1;0;-1)

Ví dụ: Giải hệ phuơng trình tuyến tính

\(\left\{ \begin{array}{l} {x_2} - 2{x_3} = 1\\ {x_1} + {x_3} = - 2\\ 2{x_1} + 2{x_2} - 2{x_3} = - 1 \end{array} \right.(I)\)

Giải: Ma trận hệ số mở rộng của (I) là

Hệ phương trình tuyến tính tổng quát có nghiệm khi nào?

Ta có: \(R(A) = 2 < R(\overline {A)} = 3\). Vậy hệ vô nghiệm.

Ví dụ: Giải hệ phương trình tuyến tính

\(\left\{ \begin{array}{l} {x_1} - {x_2} + {x_3} = 3\\ 2{x_1} + {x_3} = 2\\ 3{x_1} - {x_2} + 2{x_3} = 5 \end{array} \right.\,(I)\)

Giải: Ma trận hệ số mở rộng của (I) là

Hệ phương trình tuyến tính tổng quát có nghiệm khi nào?

Hệ phương trình tuyến tính tổng quát có nghiệm khi nào?

Ta có: \(R\left( A \right){\rm{ }} = {\rm{ }}R\left( {\overline A } \right){\rm{ }} = {\rm{ }}2\) (số ẩn là 3). Vậy hệ có vô số nghiệm với 2 ẩn chính ứng với 2 phần tử dẫn đầu là x1, x2. Giải  x1, x2 theo ẩn tự do  x3 ta có hệ phương trình có vô số nghiệm với nghiệm tổng quát là: \(X = \left( {1 - \frac{\alpha }{2}; - 2 + \frac{\alpha }{2};\alpha } \right)\,với\,\alpha \in R\)

4. Hệ Cramer

Hệ phương trình tuyến tính AX = B được gọi là hệ Cramer nếu A là ma trận vuông không suy biến , nghĩa là \(\left| A \right| \ne 0\)

Khi đó, ta có nghiệm duy nhất: \(X = A^{-1}B\)

Nếu cấp của ma trận A khá lớn thì việc tìm \(A^{-1}\) tương đổi phức tạp. Hơn nữa, có khi ta chi cần tìm một vài ẩn \(x_j\) thay vì toàn bộ các ẩ\(X=(x_1; x_2;....;x_n)\). Từ đó, người ta tìm ra công thúc tính từng ẩn \(x_j\) dựa vào công thức \(X = A^{-1}B\) như sau :

\({x_j} = \frac{{{D_j}}}{D}\)

Trong đó \(D = \left| A \right|\,và\,{D_j}\) là định thức của ma trận có được từ A bằng cách thay cột j bởi vế phải (cột B ).

Ví dụ: Giải hệ phương trình tuyến tính

\(\left\{ \begin{array}{l} {x_1} - 2{x_2} - {x_3} = - 3\\ - 3{x_1} + {x_2} = - 2\\ - 2{x_1} + {x_3} = 1 \end{array} \right.\)

Giải:

Ta có:

\(\begin{array}{l} D = \left| {\begin{array}{*{20}{c}} 1&{ - 2}&{ - 1}\\ { - 3}&1&0\\ { - 2}&0&1 \end{array}} \right| = - 7;\,\,\,\,{D_1} = \left| {\begin{array}{*{20}{c}} { - 3}&{ - 2}&{ - 1}\\ { - 2}&1&0\\ 1&0&1 \end{array}} \right| = - 6\\ {D_2} = \left| {\begin{array}{*{20}{c}} 1&{ - 3}&{ - 1}\\ { - 3}&{ - 2}&0\\ { - 2}&1&1 \end{array}} \right| = - 4;\,\,\,{D_3} = \left| {\begin{array}{*{20}{c}} 1&{ - 2}&{ - 3}\\ { - 3}&1&{ - 2}\\ { - 2}&0&1 \end{array}} \right| = - 19 \end{array}\)

Vậy nghiệm là \(X = \left( {\frac{{{D_1}}}{D};\frac{{{D_2}}}{D};\frac{{{D_3}}}{D}} \right) = \left( {\frac{6}{7};\frac{4}{7};\frac{{19}}{7}} \right)\)

5. Hệ phương trình tuyến tính thuần nhất.

Hệ phương trình tuyến tính AX = 0 gọi là hệ thuần nhất. Ngoài các tính chất chung của hệ AX = B, hệ thuần nhất AX = 0 còn có các tính chất riêng như sau :

  • Hệ luôn luôn có nghiệm tầm thường X = 0 (không có trường hợp hệ vô nghiệm)
  • Nếu A là ma trận vuông, không suy biến thì hệ có nghiệm duy nhất \(X = A^{-1}0 = 0\), chính là nghiệm tầm thường.
  • Nếu hệ có vô số nghiệm thì tập nghiệm là một không gian con của không gian \(R^n\) (với n là số ẩn). Một cơ sở của không gian nghiệm được gọi là một hệ nghiệm cơ bản.

Ví dụ: Giải hệ phương trình tuyến tính \(\left\{ \begin{array}{l} {x_1} - {x_2} + {x_3} = 0\\ 2{x_1} - {x_2} = 0\\ {x_2} + 2{x_3} = 0 \end{array} \right.\)

Giải:

Ta có: \(D = \left| {\begin{array}{*{20}{c}} 1&{ - 1}&1\\ 2&{ - 1}&0\\ 0&1&2 \end{array}} \right| = 4 \ne 0\)

Đây là hệ Cramer, nên hệ có nghiệm duy nhất X = (0; 0; 0)

Ví dụ: Giải hệ phương trình tuyến tính \(\left\{ \begin{array}{l} {x_1} + 2{x_2} + 5{x_3} = 0\\ - 2{x_1} + {x_2} = 0\\ - {x_1} + 3{x_2} + 5{x_3} = 0 \end{array} \right.\)

Giải:

Ta có: 

Hệ phương trình tuyến tính tổng quát có nghiệm khi nào?

 Hệ có vô số nghiệm với nghiệm tổng quát là: \(X = ( - \alpha ; - 2\alpha ;\alpha ) = \alpha ( - 1; - 2;1),\alpha \in R\)

Một hệ nghiệm cơ bản là {(-1;-2;1)}. Số chiều của không gian nghiệm là 1.

Ví dụ: Giải hệ phương trình tuyến tính

 \(\left\{ \begin{array}{l} {x_1} - {x_2} - {x_4} = 0\\ {x_2} - {x_3} - {x_4} = 0\\ 2{x_1} - {x_2} - {x_3} - 3{x_4} = 0 \end{array} \right.\)

Giải:

Ta có:

Hệ phương trình tuyến tính tổng quát có nghiệm khi nào?

Nghiệm tổng quát là:

\(X = (\alpha + 2\beta ;\alpha + \beta ;\alpha ;\beta ) = \alpha (1;1;1;0) + \beta (2;1;0;1)\,với\,\,\alpha ,\beta \in R\)

Một hệ nghiệm cơ bản là {(1;1;1;0).(2;1;0;1)}. Số chiều của không gian nghiệm là 2.